精英家教网 > 高中数学 > 题目详情

【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:

男生身高频率分布表

男生身高

(单位:厘米)

频数

7

10

19

18

4

2

女生身高频数分布表

女生身高

(单位:厘米)

频数

3

10

15

6

3

3

1)估计这1000名学生中女生的人数;

2)估计这1000名学生中身高在的概率;

3)在样本中,从身高在的女生中任取3名女生进行调查,设表示所选3名学生中身高在的人数,求的分布列和数学期望.(身高单位:厘米)

【答案】1(名)(20.493)详见解析

【解析】

1)根据统计表,可知样本中男生人数和女生人数,再按比例求解.

2)由表知样本中身高在的人数和样本容量,再代入公式求解.

3)根据题意,明确的可能取值为0123,然后分别求得其概率,列出分布列求期望.

1)样本中男生为60名,女生为40.

估计这1000名学生中女生的人数大约是(名).

2)由表知样本中身高在的人数为,样本容量是100

样本中身高在的概率为.

估计这1000名学生中身高在的概率为0.49.

3)依题意,的可能取值为0123.

.

的分布列为

0

1

2

3

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,,,,在边,关于直线的对称点分别为,的面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,左、右顶点分别为AB,点M是椭圆C上异于AB的一点,直线AMy轴交于点P

(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;

(Ⅱ)设椭圆C的右焦点为F,点Qy轴上,且∠PFQ=90°,求证:AQBM

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体的底面是正方形,点在棱上,.

1)证明:平面

2)若,求二面角正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,为棱的中点,.

(1)证明:平面

(2)设二面角的正切值为,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象与轴交点的横坐标构成一个公差为的等差数列,把函数的图象沿轴向左平移个单位,纵坐标扩大到原来的2倍得到函数的图象,则下列关于函数的命题中正确的是(

A.函数是奇函数B.的图象关于直线对称

C.上是增函数D.时,函数的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,过对角线作平面交棱于点E,交棱于点F,则:

①平面分正方体所得两部分的体积相等;

②四边形一定是平行四边形;

③平面与平面不可能垂直;

④四边形的面积有最大值.

其中所有正确结论的序号为(

A.①④B.②③C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乡镇为了打赢脱贫攻坚战,决定盘活贫困村的各项经济发展要素,实施了产业、创业、就业“三业并举”工程.在实施过程中,引导某贫困村农户因地制宜开展种植某经济作物.该类经济作物的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,其质量指标的等级划分如下表1

1

质量指标值

产品等级

优秀品

良好品

合格品

不合格品

为了解该类经济作物在当地的种植效益,当地引种了甲、乙两个品种.并随机抽取了甲、乙两个品种的各件产品,测量了每件产品的质量指标值,得到下面产品质量指标值频率分布直方图(图1和图2.

1)若将频率视为概率,从乙品种产品中有放回地随机抽取件,记“抽出乙品种产品中至少件良好品或以上”为事件,求事件发生的概率(结果保留小数点后)(参考数值:)

2)若甲、乙两个品种的销售利润率与质量指标值满足表2

2

质量指标值

销售利润率

其中,试分析,从长期来看,种植甲、乙哪个品种的平均利润率较大?

查看答案和解析>>

同步练习册答案