ÏÂÃæÓÐÎå¸öÃüÌâ
¢Ùº¯Êýf£¨x£©=sin4x-cos4xͼÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ(-
¦Ð
4
£¬0)
£»
¢Úy=
x+3
x-1
µÄͼÏó¹ØÓڵ㣨-1£¬1£©¶Ô³Æ£¬
¢Û¹ØÓÚxµÄ·½³Ìx2+£¨a+1£©x+a+b+1=0£¨a¡Ù0£¬a¡¢b¡ÊR£©µÄÁ½Êµ¸ùΪx1£¬x2£¬Èô0£¼x1£¼1£¼x2£¼2£¬Ôò
b
a
µÄȡֵ·¶Î§ÊÇ£¨-
5
4
£¬-
1
2
£©
¢ÜÉèf£¨x£©ÊÇÁ¬ÐøµÄżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£¬Ôò·½³Ìf(x)=f(
x+3
x+4
)
ËùÓиùÖ®ºÍΪ8
¢Ý²»µÈʽsinx£¾
4x2
¦Ð2
¶ÔÈÎÒâx¡Ê(0£¬
¦Ð
2
)
ºã³ÉÁ¢£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
 
£®
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¼ÆËãÌâ,ÔĶÁÐÍ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ,Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£ºÔËÓöþ±¶½ÇµÄÓàÏÒ¹«Ê½£¬»¯¼òf£¨x£©£¬ÔÙÓÉÓàÏÒº¯ÊýµÄ¶Ô³ÆÖÐÐÄ£¬¼´¿ÉÅжϢ٣»
ÓÉ·´±ÈÀýº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÒÔ¼°Í¼ÏóÆ½ÒÆµÄ¹æÂÉ£¬¼´¿ÉÅжϢڣ»
Óɶþ´Î·½³Ìʵ¸ùµÄ·Ö²¼£¬½áºÏ¶þ´Îº¯ÊýµÄͼÏ󣬵õ½²»µÈʽ×飬»­³ö¿ÉÐÐÓò£¬ÔÙÓÉÖ±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÅжϢۣ»
ÔËÓÃżº¯ÊýµÄÐÔÖʺ͵¥µ÷ÐÔ£¬½áºÏΤ´ï¶¨Àí£¬¼´¿ÉÅжϢܣ»
ÔËÓÃÕýÏÒº¯ÊýºÍÅ×ÎïÏßµÄͼÏ󣬼´¿ÉÅжϢݣ®
½â´ð£º ½â£º¶ÔÓÚ¢Ù£¬º¯Êýf£¨x£©=sin4x-cos4x=£¨sin2x-cos2x£©
£¨sin2x+cos2x£©=-cos2x£¬Áî2x=k¦Ð+
¦Ð
2
£¬¼´x=
k¦Ð
2
+
¦Ð
4
£¬kΪÕûÊý£¬¼´¹ØÓÚ£¨
k¦Ð
2
+
¦Ð
4
£¬0£©¶Ô³Æ£¬Ôò¢Ù¶Ô£»
¶ÔÓÚ¢Ú£¬y=
x+3
x-1
=1+
4
x-1
µÄͼÏó¿ÉÓÉy=
4
x
µÄͼÏóÏòÓÒÆ½ÒÆÒ»¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆÒ»¸öµ¥Î»µÃµ½£¬¹Ê¹ØÓÚ£¨1£¬1£©¶Ô³Æ£¬
Ôò¢Ú´í£»
¶ÔÓÚ¢Û£¬¹ØÓÚxµÄ·½³Ìx2+£¨a+1£©x+a+b+1=0£¨a¡Ù0£¬
a¡¢b¡ÊR£©µÄÁ½Êµ¸ùΪx1£¬x2£¬
ÇÒ0£¼x1£¼1£¼x2£¼2£¬Ôò
f(0)£¾0
f(1)£¼0
f(2)£¾0
¼´ÓÐ
a+b+1£¾0
2a+b+3£¼0
3a+b+7£¾0
£¬
×÷³ö²»µÈʽ×é±íʾµÄ¿ÉÐÐÓò£¬
b
a
=
b-0
a-0
±íʾµã£¨a£¬b£©ÓëÔ­µãµÄбÂÊ£¬
Ò×µÃA£¨-4£¬5£©£¬B£¨-2£¬1£©£¬C£¨-3£¬2£©£¬kOA=-
5
4
£¬kOB=-
1
2
£¬ÓÉͼÏó£¬
¿ÉÖª
b
a
µÄȡֵ·¶Î§ÊÇ£¨-
5
4
£¬-
1
2
£©£¬Ôò¢Û¶Ô£»
¶ÔÓڢܣ¬Éèf£¨x£©ÊÇÁ¬ÐøµÄżº¯Êý£¬ÇÒÔÚ£¨0£¬+¡Þ£©Êǵ¥µ÷º¯Êý£¬Ôò·½³Ìf(x)=f(
x+3
x+4
)

¼´Îªf£¨|x|£©=f£¨|
x+3
x+4
|£©£¬ÔòÓÐx=
x+3
x+4
»òx+
x+3
x+4
=0£¬¼´ÓÐx2+3x-3=0»òx2+5x+3=0£¬
¼´ÓÐΤ´ï¶¨Àí¿ÉµÃ£¬x1+x2=-3£¬x3+x4=-5£¬ËùÓиùÖ®ºÍΪ-8£¬Ôò¢Ü´í£»
¶ÔÓڢݣ¬Áîy=sinx£¬y=
4x2
¦Ð2
£¬Ôòx=0£¬y=0£¬x=
¦Ð
2
£¬y=1£¬ÓÉsinxÔÚ£¨0£¬
¦Ð
2
£©µÄͼÏóÉÏ͹£¬
y=
4x2
¦Ð2
ΪÅ×ÎïÏßϰ¼£¬Ôò²»µÈʽsinx£¾
4x2
¦Ð2
¶ÔÈÎÒâx¡Ê(0£¬
¦Ð
2
)
ºã³ÉÁ¢£®Ôò¢Ý¶Ô£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ý
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄ¶Ô³ÆÐÔ¡¢¶þ´Î·½³Ìʵ¸ùµÄ·Ö²¼ºÍ²»µÈʽ±íʾµÄÆ½ÃæÇøÓò¡¢º¯ÊýµÄÆæÅ¼ÐÔºÍÔËÓã¬ÒÔ¼°²»µÈʽºã³ÉÁ¢ÎÊÌâµÄ½â·¨£¬¿¼²éÊýÐνáºÏµÄ˼Ïë·½·¨£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªm£¬n¡ÊR£¬Ôò¡°lnm£¼lnn¡±ÊÇ¡°em£¼en¡±µÄ£¨¡¡¡¡£©
A¡¢±ØÒª²»³ä·ÖÌõ¼þ
B¡¢³ä·Ö²»±ØÒªÌõ¼þ
C¡¢³äÒªÌõ¼þ
D¡¢²»³ä·Ö²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁв»µÈʽÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢tan
13¦Ð
4
£¼tan
13¦Ð
5
B¡¢sin
¦Ð
5
£¼cos£¨-
¦Ð
5
£©
C¡¢sin
¦Ð
7
£¼sin
7¦Ð
8
D¡¢cos
7¦Ð
5
£¾cos£¨-
2¦Ð
5
£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax-1£¨x¡Ý0£©µÄͼÏó¾­¹ýµã£¨3£¬
1
9
£©£¬ÆäÖÐa£¾0ÇÒa¡Ù1£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èôkf2£¨x£©-2f£¨x£©¡Ý-2ºã³ÉÁ¢£¬ÆäÖÐx¡Ê£¨0£¬2]£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèʵÊýxºÍyÂú×ãÔ¼ÊøÌõ¼þ
x-2y+3¡Ý0
x+3y-7¡Ý0
2x+y-9¡Ü0
£¬ÇÒz=ax+yÈ¡µÃ×îСֵµÄ×îÓŽâ½öΪµãA£¨1£¬2£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢(-¡Þ£¬-
1
3
)
B¡¢(-¡Þ£¬-
1
3
]
C¡¢(
1
3
£¬+¡Þ)
D¡¢[
1
3
£¬+¡Þ)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬cosA£ºcosB£ºsinC=a£ºb£ºc£¬Ôò¡÷ABCµÄÐÎ״Ϊ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖÐA£¬B£¬CËù¶ÔµÄ±ßΪa£¬b£¬c£¬Èôº¯Êýf£¨x£©=x2+mx-
1
4
Ϊżº¯Êý£¬ÇÒf(cos
B
2
)=0
£®
£¨¢ñ£©Çó½ÇBµÄ´óС£»
£¨¢ò£©Èô¡÷ABCµÄÃæ»ýΪ
15
3
4
£¬ÆäÍâ½ÓÔ²°ë¾¶Îª
7
3
3
£¬Çó¡÷ABCµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µ½Á½¶¨µãF1£¨-3£¬0£©¡¢F2£¨3£¬0£©µÄ¾àÀëÖ®²îµÄ¾ø¶ÔÖµµÈÓÚ6µÄµãMµÄ¹ì¼££¨¡¡¡¡£©
A¡¢Á½ÌõÉäÏßB¡¢Ïß¶Î
C¡¢Ë«ÇúÏßD¡¢ÍÖÔ²

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁм¸ºÎÌåµÄÈýÊÓͼÊÇÒ»ÑùµÄΪ£¨¡¡¡¡£©
A¡¢Ô²Ì¨B¡¢Ô²×¶C¡¢Ô²ÖùD¡¢Çò

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸