ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªan+1=2Sn+2(n¡ÊN*)£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚanÓëan+1Ö®¼ä²åÈën¸öÊý£¬Ê¹Õân+2¸öÊý×é³É¹«²îΪdnµÄµÈ²îÊýÁУ¨È磺ÔÚa1Óëa2Ö®¼ä²åÈë1¸öÊý¹¹³ÉµÚÒ»¸öµÈ²îÊýÁУ¬Æä¹«²îΪd1£»ÔÚa2Óëa3Ö®¼ä²åÈë2¸öÊý¹¹³ÉµÚ¶þ¸öµÈ²îÊýÁУ¬Æä¹«²îΪd2£¬¡­ÒÔ´ËÀàÍÆ£©£¬ÉèµÚn¸öµÈ²îÊýÁеĺÍÊÇAn£®ÊÇ·ñ´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÕâ¸ö¶àÏîʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¶ÔÓÚ£¨2£©ÖеÄÊýÁÐd1£¬d2£¬d3£¬¡­£¬dn£¬¡­£¬Õâ¸öÊýÁÐÖÐÊÇ·ñ´æÔÚ²»Í¬µÄÈýÏîdm£¬dk£¬dp£¨ÆäÖÐÕýÕûÊým£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬Çó³öÕâÑùµÄÈýÏÈô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨1£©n¡Ý2ʱ£¬ÓÉan+1=2Sn+2£¬µÃan=2Sn-1+
Á½Ê½Ïà¼õ¿ÉµÃ£ºan+1-an=2an£¬¡àan+1=3an£¬¼´ÊýÁÐ{an}µÄ¹«±ÈΪ3
¡ßn=1ʱ£¬a2=2S1+2£¬¡à3a1=2a1+2£¬½âµÃa1=2£¬
¡àan=2¡Á3n-1£»
£¨2£©ÓÉ£¨1£©Öªan=2¡Á3n-1£¬an+1=2¡Á3n£¬
ÒòΪan+1=an+£¨n+1£©dn£¬ËùÒÔdn=
4¡Á3n-1
n+1

µÚn¸öµÈ²îÊýÁеĺÍÊÇAn=£¨n+2£©an+
(n+2)(n+1)
2
¡Á
4¡Á3n-1
n+1
=4£¨n+2£©¡Á3n-1=£¨n+2£©£¨n+1£©dn£¬
¡à´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©=£¨n+2£©£¨n+1£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£»
£¨3£©¼ÙÉèÔÚÊýÁÐ{dn}ÖдæÔÚdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁÐ
Ôòdk2=dmdp£¬¼´£¨
4¡Á3k-1
k+1
£©2=
4¡Á3m-1
m+1
¡Á
4¡Á3p-1
p+1

ÒòΪm£¬k£¬p³ÉµÈ²îÊýÁУ¬ËùÒÔm+p=2k¢Ù
ÉÏʽ¿ÉÒÔ»¯¼òΪk2=mp¢Ú
Óɢ٢ڿɵÃm=k=pÕâÓëÌâÉèì¶Ü
ËùÒÔÔÚÊýÁÐ{dn}Öв»´æÔÚÈýÏîdm£¬dk£¬dp£¨ÆäÖÐm£¬k£¬p³ÉµÈ²îÊýÁУ©³ÉµÈ±ÈÊýÁУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô8a2+a5=0£¬ÔòÏÂÁÐʽ×ÓÖÐÊýÖµ²»ÄÜÈ·¶¨µÄÊÇ£¨¡¡¡¡£©
A¡¢
a5
a3
B¡¢
S5
S3
C¡¢
an+1
an
D¡¢
Sn+1
Sn

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

12¡¢ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ËÈÖªS10=¡Ò03£¨1+2x£©dx£¬S20=18£¬ÔòS30=
21
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS6£ºS3=3£¬ÔòS9£ºS6=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô
S6
S3
=3£¬Ôò
S9
S6
=£¨¡¡¡¡£©
A¡¢
1
2
B¡¢
7
3
C¡¢
8
3
D¡¢1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèµÈ±ÈÊýÁÐ{an}µÄǰn ÏîºÍΪSn£¬Èô
S6
S3
=3£¬Ôò
S9
S3
=
7
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸