分析 (1)利用二项展开式的通项公式以及a3=-$\frac{1}{2}$,求得n的值.
(2)利用二项展开式的通项公式,根据|ak|最大,求得k的值.
(3)要证|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$,只要即证${C}_{2n}^{n}$<$\frac{{4}^{n}}{\sqrt{2n+1}}$成立,用数学归纳法证得不等式成立.
解答 (1)若a3=-$\frac{1}{2}$,则${C}_{2n}^{3}$•${(-\frac{1}{2})}^{3}$=-$\frac{1}{2}$,∴2n3-3n2+n-6=0,
所以(n-2)(2n2+n+3)=0,所n=2.
(2)当n=5时,(1-$\frac{x}{2}$)10=a0+a1x+a2x2+…+a10x10 ,其中ai=${C}_{10}^{i}$•${(-\frac{1}{2})}^{i}$.
假设系数|ak|最大,则有$\left\{\begin{array}{l}{{C}_{10}^{k}{{•(\frac{1}{2})}^{k}≥C}_{10}^{k+1}{•(\frac{1}{2})}^{k+1}}\\{{C}_{10}^{k}{{•(\frac{1}{2})}^{k}≥C}_{10}^{k-1}{•(\frac{1}{2})}^{k-1}}\end{array}\right.$,解得$\frac{8}{3}$≤k≤$\frac{11}{3}$,∴k=3,
所以a3=${C}_{10}^{3}$•${(-\frac{1}{2})}^{3}$=-15最小,a2=${C}_{10}^{2}$•${(-\frac{1}{2})}^{2}$=$\frac{45}{4}$,a4=${C}_{10}^{4}$•${(-\frac{1}{2})}^{4}$=$\frac{105}{8}$>a2,
所以a4最大.
(3)因为an=${C}_{2n}^{n}$•${(-\frac{1}{2})}^{n}$,所以|an|=${C}_{2n}^{n}$•${(\frac{1}{2})}^{n}$,
所以要证|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$,
只要证:${C}_{2n}^{n}$•${(\frac{1}{2})}^{n}$<$\frac{{2}^{n}}{\sqrt{2n+1}}$,即证${C}_{2n}^{n}$<$\frac{{4}^{n}}{\sqrt{2n+1}}$成立.
当n=1时,左边=${C}_{2}^{1}$=2,右边=$\frac{4}{\sqrt{3}}$>2,所以左边<右边成立;
假设当n=k时,${C}_{2k}^{k}$<$\frac{{4}^{k}}{\sqrt{2k+1}}$成立,
则当n=k+1时,${C}_{2k+2}^{k+1}$=$\frac{(2k+2)!}{(k+1)!•(k+1)!}$=$\frac{(2k+2)•(2k+1)•(2k)!}{{(k+1)}^{2}•k!•k!}$<$\frac{2(2k+1)}{k+1}$•$\frac{{4}^{k}}{\sqrt{2k+1}}$
=$\frac{\sqrt{2k+1}{•4}^{k+1}}{\sqrt{{4k}^{2}+8k+4}}$<$\frac{\sqrt{2k+1}{•4}^{k+1}}{\sqrt{{4k}^{2}+8k+3}}$=$\frac{{4}^{k+1}}{\sqrt{2k+3}}$=$\frac{{4}^{k+1}}{\sqrt{2(k+1)+1}}$.
所以当n=k+1时,不等式也成立,
则 ${C}_{2n}^{n}$<$\frac{{4}^{n}}{\sqrt{2n+1}}$成立,即|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$,成立.
点评 本题主要考查二项式定理的应用,用数学归纳法证明不等式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com