精英家教网 > 高中数学 > 题目详情
14.仙游某家具城生产某种家具每件成本为3万元,每件售价为x万元(x>3),月销量为t件,经验表明,t=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5万元时,月销量为11件.
(1)求a的值;
(2)求售价定为多少时,该家具的月利润最大,最大值为多少?

分析 (1)将x,y的值代入方程,求出a的值即可;(2)求出函数表达式,根据函数的单调性,求出函数的极大值和极小值,从而求出函数的最大值,得到答案即可.

解答 解:(1)因为x=5时,y=11,所以$\frac{a}{2}$+10=11,a=2.…(2分)
(2)由(1)可知,该商品每日的销售量y=$\frac{2}{x-3}$+10(x-6)2
所以该家具的月利润为:
f(x)=(x-3)[$\frac{2}{x-3}$+10(x-6)2]=2+10(x-3)(x-6)2,3<x<6.…(5分)
从而,f′(x)=10[(x-6)2+2(x-3)(x-6)]=30(x-4)(x-6).…(7分)
于是,当x变化时,f′(x),f(x)的变化情况如下表:

x(3,4)4(4,6)
f′(x)+0-
f(x)单调递增极大值42单调递减
由上表可得,x=4是函数f(x)在区间(3,6)内的极大值点,也是最大值点.
所以,当x=4时,函数f(x)取得最大值,且最大值等于42.…(11分)
答:当销售价格为4万元时,该家具的月利润最大,最大值等于42万元.…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数模型的建立,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知(1-$\frac{x}{2}$)2n=a0+a1x+a2x2+…+a2nx2n(n∈N*).
(1)若a3=-$\frac{1}{2}$,求n的值;
(2)当n=5时,求系数ai(i∈N,i≤2n)的最大值和最小值;
(3)求证:|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设定义域为R的函数f(x)在区间[1,+∞)上单调递增,且函数f(x+1)是偶函数,则满足f(2x-1)<f($\frac{1}{3}$)的x取值范围是(  )
A.(-∞,$\frac{2}{3}$)∪($\frac{4}{3}$,+∞)B.($\frac{2}{3}$,$\frac{4}{3}$)C.(-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞)D.($\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某大学进行自主招生时,要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如图所示:

从这次测试看,甲、乙两位同学,总成绩排名更靠前的是乙;甲、丙两位同学,逻辑思维成绩排名更靠前的是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P是圆(x+1)2+(y-2)2=2上任一点,则点P到直线x-y-1=0距离的最大值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$2+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m∈R,函数f(x)=(x2+mx+m)•ex
(Ⅰ)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求证:f(x)≥x3+x2+mxex+mex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1BC的底面△ABC中,CA=CB=2,∠BCA=90°,棱AA1=4,M.N分别是A1B1,A1A的中点.
(1)求证:A1B⊥C1M;
(2)设直线BN与平面ABC1所成的角为θ,求sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax+b}{{{x^2}+1}}$在点(-1,f(-1))处的切线方程为x+y+3=0
(1)求函数f(x)的解析式;
(2)设g(x)=ln(x-1),求证:2g(x)<(x2+1)f(x)在x∈(1,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数($\frac{1-i}{1+i}$)10的值等于(  )
A.-2B.-1C.2D.1

查看答案和解析>>

同步练习册答案