分析 甲、乙两人中至少有一人考试合格的对立事件是甲、乙两人都不合格,由此能求出甲、乙两人中至少有一人考试合格的概率.
解答 解:甲、乙两人中至少有一人考试合格的对立事件是甲、乙两人都不合格,
∴甲、乙两人中至少有一人考试合格的概率:
p=1-[${C}_{3}^{1}(\frac{2}{3})(\frac{1}{3})^{2}$+($\frac{1}{3}$)3][${C}_{3}^{1}(\frac{1}{2})^{2}(\frac{1}{2})+(\frac{1}{2})^{3}$]=1-$\frac{7}{27}×\frac{1}{2}$=$\frac{47}{54}$.
故答案为:$\frac{47}{54}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 3 | C. | (2,1) | D. | (3,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若z1、z2∈C,z1-z2>0,则z1>z2 | B. | 若z∈R,则z•$\overline{z}$=|z|2不成立 | ||
| C. | z1、z2∈C,z1•z2=0,则z1=0或z2=0 | D. | z1、z2∈C,z12+z22=0,则z1=0且z2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | $2+2\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com