精英家教网 > 高中数学 > 题目详情
8.下列命题中,正确的命题是(  )
A.若z1、z2∈C,z1-z2>0,则z1>z2B.若z∈R,则z•$\overline{z}$=|z|2不成立
C.z1、z2∈C,z1•z2=0,则z1=0或z2=0D.z1、z2∈C,z12+z22=0,则z1=0且z2=0

分析 由已知条件利用复数的性质及运算法则直接求解.

解答 解:在A中,若z1、z2∈C,z1-z2>0,
则z1的实数大于z2的实部,z1与z2的虚部相等,z1与z2不能比较大小,故A错误;
在B中,若z∈R,当z=0时,z•$\overline{z}$=|z|2成立,故B错误;
在C中,z1、z2∈C,z1•z2=0,则由复数乘积的运算法则得z1=0或z2=0,故C正确;
在D中,令Z1=1,Z2=i,则Z12+Z22=0成立,而Z1=0且Z2=0不成立,
∴z1、z2∈C,z12+z22=0,则z1=0且z2=0不成立,故D错误.
故选:C.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意复数性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知算法如下:
S=0  i=1
Input  n
while  i<=n
S=S+2*i
i=i+1wend
print  S
end
若输入变量n的值为3,则输出变量S的值为12;若输出变量S的值为30,则变量n的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,z=$\frac{2+i}{i}$,则z的模|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y百元.
(1)按下列要求写出函数关系式:
①设OO1=h(米),将y表示成h的函数关系式;
②设∠SDO1=θ(rad),将y表示成θ的函数关系式;
(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设α与β是关于x的方程x2+2x+m=0的两个虚数根,若α、β、0在复平面上对应的点构成直角三角形,那么实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设集合A={1,2,3},B={-1,1,3,5},则集合A∩B={1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.甲、乙两人参加一次英语口语考试,已知在试题库中任取一题,甲能答对的概率为$\frac{2}{3}$,乙能答对的概率为$\frac{1}{2}$,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.则甲、乙两人中至少有一人考试合格的概率为$\frac{47}{54}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.平面区域$\left\{\begin{array}{l}{x+y≥0}\\{2x-y≤0}\\{x-y+2≥0}\end{array}\right.$的面积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2(x+$\frac{π}{4}$)+cos2x-1.
(1)求f(x)的最小正周期、振幅、初相、对称中心;
(2)用五点法作出它一个周期内的图象;
(3)y=f(x)的图象可经过怎样的变换得到y=sinx的图象;
(4)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的值域.

查看答案和解析>>

同步练习册答案