精英家教网 > 高中数学 > 题目详情
9.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD:AD=4:1,求tan∠CBD的值.

分析 根据△ACD∽△CBD得出CD与BD的关系,从而得出tan∠CBD的值.

解答 解:∵∠ACB=∠ADC=90°,
∴△ACD∽△CBD.
设AD=a,则BD=4a.
∴$\frac{AD}{CD}=\frac{CD}{BD}$,∴CD=$\sqrt{AD•BD}$=2a.
∴tan∠CBD=$\frac{CD}{BD}$=$\frac{1}{2}$.

点评 本题考查了相似三角形的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,z=$\frac{2+i}{i}$,则z的模|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.甲、乙两人参加一次英语口语考试,已知在试题库中任取一题,甲能答对的概率为$\frac{2}{3}$,乙能答对的概率为$\frac{1}{2}$,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.则甲、乙两人中至少有一人考试合格的概率为$\frac{47}{54}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.平面区域$\left\{\begin{array}{l}{x+y≥0}\\{2x-y≤0}\\{x-y+2≥0}\end{array}\right.$的面积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体的12条面对角线和4条体对角线中随机选取两条对角线,则这两条对角线构成异面直线的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{7}{15}$D.$\frac{9}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,AB+2AC=12,BC=6,点D为边BC的中点,则中线AD长的最小值为$\frac{3\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知α∈(0,$\frac{π}{2}$),且2sin2α-sinα•cosα-3cos2α=0,求$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{sin(-α)sin(-α-π)}$+tan(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2(x+$\frac{π}{4}$)+cos2x-1.
(1)求f(x)的最小正周期、振幅、初相、对称中心;
(2)用五点法作出它一个周期内的图象;
(3)y=f(x)的图象可经过怎样的变换得到y=sinx的图象;
(4)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系中,点P是直线l:x=-1上一动点,点F(1,0),点Q为PF的中点,点M满足MQ⊥PF且$\overrightarrow{MP}$=λ$\overrightarrow{OF}$,过点M作圆(x-3)2+y2=2的切线,切点分别A,B,则|AB|的最小值为(  )
A.3B.$\frac{3}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案