精英家教网 > 高中数学 > 题目详情
1.已知α∈(0,$\frac{π}{2}$),且2sin2α-sinα•cosα-3cos2α=0,求$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{sin(-α)sin(-α-π)}$+tan(π+α)的值.

分析 利用已知条件求出正切函数值,化简所求表达式,推出结果即可.

解答 解:α∈(0,$\frac{π}{2}$),且2sin2α-sinα•cosα-3cos2α=0,
可得:2tan2α-tanα-3=0,可得tanα=$\frac{3}{2}$,tanα=-1(舍去).
$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{sin(-α)sin(-α-π)}$+tan(π+α)
=$\frac{cosαsinαtanα}{sinαsinα}$+tanα
=1+tanα
=$\frac{5}{2}$.

点评 本题考查诱导公式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.“a=1”是“直线l1:ax+y+1=0,l2:(a+2)x-3y-2=0垂直”的充分不必要条件.(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分也不必要”之一)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=loga($\sqrt{{x}^{2}+1}$+x)+$\frac{1}{{a}^{x}-1}$+1(a>0,a≠1),若f(sin($\frac{π}{6}$-α))=$\frac{1}{3}$,则f(cos(α-$\frac{2π}{3}$))=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD:AD=4:1,求tan∠CBD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知函数f(x)=|x2-4x+3|,求函数f(x)的单调区间;
(2)已知函数f(x)=x2-4|x|+3,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设定义域为R的函数f(x)在区间[1,+∞)上单调递增,且函数f(x+1)是偶函数,则满足f(2x-1)<f($\frac{1}{3}$)的x取值范围是(  )
A.(-∞,$\frac{2}{3}$)∪($\frac{4}{3}$,+∞)B.($\frac{2}{3}$,$\frac{4}{3}$)C.(-∞,$\frac{1}{3}$)∪($\frac{2}{3}$,+∞)D.($\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.随机变量ξ服从正态分布N(10,4),若η=ξ+4,则Dη的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点P是圆(x+1)2+(y-2)2=2上任一点,则点P到直线x-y-1=0距离的最大值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$2+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-x+xlnx,其中a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线x-2y-3=0,求a的值;
(Ⅱ)若f(x)≤0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案