精英家教网 > 高中数学 > 题目详情
19.已知x,y满足$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a\end{array}\right.$,且z=2x-y的最大值是最小值的-2倍,则a的值是$\frac{1}{2}$.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得到z的最值,再由z=2x+y的最大值是最小值的2倍列式求得a值.

解答 解:由约束条件$\left\{\begin{array}{l}y≥x\\ x+y≤2\\ x≥a\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x=a}\\{x+y=2}\end{array}\right.$,得B(a,2-a),
联立$\left\{\begin{array}{l}{y=x}\\{x+y=2}\end{array}\right.$,得A(1,1),
化目标函数z=2x-y为y=2x-z,
由图可知zmax=2×1-1=1,zmin=2a-2+a=3a-2,
由$\frac{1}{3a-2}=-2$,解得:a=$\frac{1}{2}$
故答案为:$\frac{1}{2}$.

点评 本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前几项的Sn=n(5-n),求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sinα=-$\frac{4}{5}$,α∈(π,$\frac{3π}{2}$),则tan$\frac{α}{2}$等于(  )
A.-2B.$\frac{1}{2}$C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设0<a<b,过两定点A(a,0)和B(b,0)分别引直线l和m,使之与抛物线y2=x有四个不同的交点,当这四点共圆时,这种直线l和m的交点P的轨迹为2x-(a+b)=0,(y≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在边长为2的正六边形ABCDEF中,则$\overrightarrow{AB}•\overrightarrow{CD}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x-5y+10<0\\ x+y-8≤0\end{array}\right.$,则目标函数z=3x-4y的取值范围是(  )
A.[-11,3)B.[-11,3]C.(-11,3)D.(-11,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.为了得到函数g(x)=cos2x的图象,可以将f(x)=sin(2x+$\frac{π}{3}$)的图象(  )
A.向左平移$\frac{π}{12}$个单位长度B.向左平移$\frac{7π}{12}$个单位长度
C.向右平移$\frac{π}{12}$个单位长度D.向右平移$\frac{7π}{12}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x-\frac{1}{2}$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求f(x)在区间$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC的内角为A、B、C,其对边分别为a、b、c,已知B为锐角,向量$\overrightarrow m=(2sinB,-\sqrt{3}),\overrightarrow n=(cos2B,2{cos^2}\frac{B}{2}-1)$,且$\overrightarrow m$∥$\overrightarrow n$.
(Ⅰ)求角B的大小及当$b∈[\sqrt{3},2\sqrt{3}]$时,△ABC的外接圆半径R的取值范围;
(Ⅱ)如果b=2,求S△ABC的最大值.

查看答案和解析>>

同步练习册答案