精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=ax3+bx,若f(a)=8,则f(-a)=-8.

分析 根据题意,由函数f(x)的解析式分析可得f(-x)=-f(x),函数f(x)为奇函数,由奇函数的性质分析可得答案.

解答 解:根据题意,对于函数f(x)=ax3+bx,
则有f(-x)=a(-x)3+b(-x)=-(ax3+bx)=-f(x),
即函数f(x)为奇函数,
若若f(a)=8,则f(-a)=-f(a)=-8;
故答案为:-8.

点评 本题考查函数奇偶性的性质,关键是分析函数f(x)的奇偶性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若等比数列{an}的前n项和为Sn,$\frac{S_8}{S_4}=3则\frac{{{S_{16}}}}{S_4}$=(  )
A.3B.7C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC中,内角A,B,C所对的边长分别为a,b,c,其中a,b是方程x2-2$\sqrt{3}$x+2=0的两根,且cos(A+B)=$\frac{1}{2}$.
(1)求角C的度数;
(2)求AB的长;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,已知a4=4,a8=-4,则a12=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于实数x,y,若|x-1|≤2,|y-1|≤2,则|x-2y+1|的最大值为(  )
A.2B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}满足a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),则a1•a2•a3…a2017=(  )
A.-6B.6C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若z∈C,i为虚数单位,且$\frac{z}{{|z{|^2}}}=\frac{3}{5}-\frac{4}{5}i$,则复数z等于(  )
A.$\frac{3}{5}+\frac{4}{5}i$B.$\frac{3}{5}-\frac{4}{5}i$C.$\frac{5}{3}-\frac{5}{4}i$D.$\frac{4}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow m=(1,2)$,$\overrightarrow n=(2,3)$,则$\overrightarrow m$在$\overrightarrow n$方向上的投影为(  )
A.$\sqrt{13}$B.8C.$\frac{{8\sqrt{5}}}{5}$D.$\frac{{8\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-3|-|x+1|.
(1)若不等式f(x)≤a的解集是空集,求实数a的取值范围;
(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案