精英家教网 > 高中数学 > 题目详情
解关于x的不等式:-
1
2
log
1
9
x
1
2
考点:指、对数不等式的解法
专题:不等式的解法及应用
分析:要解的不等式等价于log
1
9
3
log
1
9
x
log
1
9
1
3
,再利用对数的运算性质、对数函数的单调性,求得x的范围.
解答: 解:-
1
2
log
1
9
x
1
2
,等价于log
1
9
3
log
1
9
x
log
1
9
1
3
,等价于
1
3
≤x≤3,
故不等式的解集为[
1
3
,3].
点评:本题主要考查对数不等式的解法,对数的运算性质、对数函数的单调性,体现了等价转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,a=
3
,b=1,B=30°,则其面积等于(  )
A、
3
2
3
B、
3
2
C、
3
2
3
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
x≥0
y≤x
2x+y+k≤0.
,若z=x+3y的最大值为12,试求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学高一级学生的一次数学测试成绩得到一样本,其分组区间和频数是:[50,60),2;[60,70);7;[70,80),10;[80,90),x;[90,100],2.其频率分布直方图受到破坏,可见部分如图所示,据此解答如下问题:
(1)求样本的人数及x的值;
(2)估计样本的众数,并计算频率分布直方图中[80,90)的矩形的高
(3)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
a1
1b
,若向量
-2
1
在矩阵M的交换下得到向量
1
2

(Ⅰ)求矩阵M;
(Ⅱ)矩阵N=
10
21
,求直线x+y+1=0在矩阵NM的对应变换作用下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,直线l1:y=-t2+8t(其中0≤t≤2,t为常数),l2:x=2的图象如图所示.
(1)根据图象求a、b、c的值;
(2)求阴影面积S关于t的函数S(t)的解析式;
(3)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1-sin
C
2

(1)求sinC的值;
(2)若a2+b2=4(a+b)-8,求三角形三边a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

公车私用、超编配车等现象一直饱受诟病,省机关事务管理局认真贯彻落实党中央、国务院有关公务用车配备使用管理办法,积极推进公务用车制度改革.某机关单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.为配合用车制度对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5,该地区汽车限行规定如下:
车尾号0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
现将汽车日出车频率理解为日出车概率,且A,B两车出车情况相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的周期是π,最大值为3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

同步练习册答案