分析 由题意可得tan(θ+$\frac{π}{12}$)×1-2=0,化简后可得:tan(θ+$\frac{π}{12}$)=2,由二倍角的正切函数公式可求tan(2θ+$\frac{π}{6}$)的值,利用特殊角的三角函数值及两角和的正切函数公式即可计算得解.
解答 解:∵$\overrightarrow a$=(tan(θ+$\frac{π}{12}$),1),$\overrightarrow b$=(1,-2),且$\overrightarrow a$⊥$\overrightarrow b$,
∴tan(θ+$\frac{π}{12}$)×1-2=0,可得:tan(θ+$\frac{π}{12}$)=2,
∴tan(2θ+$\frac{π}{6}$)=$\frac{2tan(θ+\frac{π}{12})}{1-ta{n}^{2}(θ+\frac{π}{12})}$=-$\frac{4}{3}$,
∴tan(2θ+$\frac{5π}{12}$)=tan(2θ+$\frac{π}{6}$+$\frac{π}{4}$)=$\frac{tan(2θ+\frac{π}{6})+tan\frac{π}{4}}{1-tan(2θ+\frac{π}{6})tan\frac{π}{4}}$=$\frac{-\frac{4}{3}+1}{1-(-\frac{4}{3})×1}$=$-\frac{1}{7}$.
故答案为:$-\frac{1}{7}$.
点评 本题考查三角函数值得求解,涉及向量的垂直和数量积的关系,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 8 | C. | 7 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com