9£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ¶ÔÒ»ÇÐÕýÕûÊýn¶¼ÓÐSn=n2+$\frac{1}{2}$an£®
£¨1£©Ö¤Ã÷£ºan+1+an=4n+2£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éèf£¨n£©=£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¶ÔÒ»ÇÐÕýÕûÊýn¶¼ÓÐSn=n2+$\frac{1}{2}$an£®¿ÉµÃan+1=Sn+1-Sn£¬»¯¼òÕûÀí¼´¿ÉµÃ³ö£®
£¨2£©ÔÚSn=n2+$\frac{1}{2}$anÖУ¬Áîn=1£¬µÃa1=2£¬ÓÖa2+a1=6£¬½âµÃa2=4£®ÀûÓõÝÍÆ¹ØÏµ¿ÉµÃ£ºan+2-an=4£¬ÊýÁÐ{an}µÄÆæÊýÏîÓëżÊýÏî·Ö±ðΪ¹«²îΪ4µÄµÈ²îÊýÁУ¬¼´¿ÉµÃ³ö£®
£¨3£©f£¨n£©=£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬µÈ¼ÛÓÚ$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£®Áîg£¨n£©=$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¬Í¨¹ý×÷ÉÌÅÐ¶ÏÆäµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð £¨1£©Ö¤Ã÷£º¡ß¶ÔÒ»ÇÐÕýÕûÊýn¶¼ÓÐSn=n2+$\frac{1}{2}$an£®
¡àan+1=Sn+1-Sn=$£¨n+1£©^{2}+\frac{1}{2}{a}_{n+1}$-£¨n2+$\frac{1}{2}$an£©£¬
¡àan+1+an=4n+2£®
£¨2£©½â£ºÔÚSn=n2+$\frac{1}{2}$anÖУ¬Áîn=1£¬µÃa1=2£¬
ÓÖa2+a1=6£¬½âµÃa2=4£®
¡ßan+1+an=4n+2£¬an+2+an+1=4n+6£¬
Á½Ê½Ïà¼õ£¬µÃan+2-an=4£¬
¡àÊýÁÐ{an}µÄÆæÊýÏîÓëżÊýÏî·Ö±ðΪ¹«²îΪ4µÄµÈ²îÊýÁУ¬
¡àµ±nΪżÊýʱ£¬an=a2+$£¨\frac{n}{2}-1£©$¡Á4=2n£®
µ±nÎªÆæÊýʱ£¬n+1ΪżÊý£¬ÓÉÉÏʽ¼°£¨1£©Öª£ºan=4n+2-an+1=2n£¬
¡àÊýÁÐ{an}µÄͨÏʽÊÇan=2n£®
£¨3£©½â£ºf£¨n£©=£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬
µÈ¼ÛÓÚ$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£®£¬
Áîg£¨n£©=$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¬
ÔòÓÉ£¨2£©Öªg£¨n£©£¾0£¬
¡à$\frac{g£¨n+1£©}{g£¨n£©}$=$\frac{\sqrt{2n+3}£¨1-\frac{1}{{a}_{n+1}}£©}{\sqrt{2n+1}}$=$\frac{\sqrt{2n+3}£¨1-\frac{1}{2n+2}£©}{\sqrt{2n+1}}$=$\frac{\sqrt{£¨2n+2£©^{2}-1}}{2n+2}$£¼1£®
¡àg£¨n+1£©£¼g£¨n£©£¬¼´g£¨n£©µÄÖµËænµÄÔö´ó¶ø¼õС£®
¡àn¡ÊN*ʱ£¬g£¨n£©µÄ×î´óֵΪg£¨1£©=$\frac{\sqrt{3}}{2}$£®
Èô´æÔÚʵÊýa£¬·ûºÏÌâÒ⣬Ôò±ØÓÐ$\frac{2{a}^{2}-3}{2a}$$£¾\frac{\sqrt{3}}{2}$£¬
¼´a£¨a-$\sqrt{3}$£©$£¨a+\frac{\sqrt{3}}{2}£©$£¾0£®
½âµÃ$-\frac{\sqrt{3}}{2}$£¼a£¼0£¬»òa$£¾\sqrt{3}$£®
Òò´Ë£¬´æÔÚʵÊýa£¬·ûºÏÌâÒ⣬Æäȡֵ·¶Î§Îª$£¨-\frac{\sqrt{3}}{2}£¬0£©$¡È$£¨\sqrt{3}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁеÄͨÏʽ¡¢¡°·ÅËõ·¨¡±¡¢²»µÈʽµÄ½â·¨¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¾ØÐÎABCD£¬AB=1£¬BC=2£¬½«¡÷ABDÑØ¾ØÐεĶԽÇÏßBDËùÔÚµÄÖ±Ïß½øÐз­ÕÛ£¬ÔÚ·­Õ۵Ĺý³ÌÖУ¨¡¡¡¡£©
A£®´æÔÚij¸öλÖã¬Ê¹µÃÖ±ÏßABºÍÖ±ÏßCD´¹Ö±
B£®´æÔÚij¸öλÖã¬Ê¹µÃÖ±ÏßACºÍÖ±ÏßBD´¹Ö±
C£®´æÔÚij¸öλÖã¬Ê¹µÃÖ±ÏßADºÍÖ±ÏßBC´¹Ö±
D£®ÎÞÂÛ·­ÕÛµ½Ê²Ã´Î»Öã¬ÒÔÉÏÈý×éÖ±Ïß¾ù²»´¹Ö±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèÏòÁ¿$\overrightarrow{a}$=£¨cos¦Á£¬-$\frac{\sqrt{2}}{2}$£©µÄģΪ$\frac{\sqrt{3}}{2}$£¬Ôòcos2¦Á=£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®$\frac{1}{2}$C£®-$\frac{1}{2}$D£®-$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èôsin¦Á=$\frac{3}{5}$ÇÒ¦ÁÊǵڶþÏóÏ޽ǣ¬Ôòtan£¨¦Á-$\frac{¦Ð}{4}$£©=-7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª$\overrightarrow a$=£¨tan£¨¦È+$\frac{¦Ð}{12}$£©£¬1£©£¬$\overrightarrow b$=£¨1£¬-2£©£¬ÇÒ$\overrightarrow a$¡Í$\overrightarrow b$£¬Ôòtan£¨2¦È+$\frac{5¦Ð}{12}$£©=$-\frac{1}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¸´Êýz=$\frac{{2+{i^{2016}}}}{1+i}$£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzµÄ¹²éÊýÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³ÖÖ²úÆ·µÄÖÊÁ¿ÒÔÆäÖÊÁ¿Ö¸±êÖµºâÁ¿£¬ÖÊÁ¿Ö¸±êÖµÔ½´ó±íÃ÷ÖÊÁ¿Ô½ºÃ£¬ÇÒÖÊÁ¿Ö¸±êÖµ´óÓÚ17¿Ëʱ£¬¸Ã²úƷΪÓÅµÈÆ·£®ÏÖÔÚΪÁ˽â¼×¡¢ÒÒÁ½³§²úÆ·µÄÖÊÁ¿£¬´ÓÁ½³§Éú²úµÄ²úÆ·ÖзֱðËæ»ú³éÈ¡¸÷10¼þÑùÆ·£¬²âÁ¿ÑùÆ·µÄÖÊÁ¿Ö¸±êÖµ£¨µ¥Î»£º¿Ë£©•ÈçͼÊDzâÁ¿Êý¾ÝµÄ¾¥Ò¶Í¼£º
£¨1£©ÊÔÓÃÉÏÊöÑù±¾Êý¾Ý¹À¼ÆA¡¢BÁ½³§Éú²úµÄÓÅµÈÆ·ÂÊ
£¨2£©´Ó¼×³§10¼þÑùÆ·ÖгéÈ¡2¼þ£¬ÒÒ³§10¼þÖгéÈ¡1¼þ£¬Èô3¼þÖÐÓÅµÈÆ·µÄ¼þÊý¼ÇΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨3£©´Ó¼×³§µÄ10¼þÑùÆ·ÖÐÓзŻصÄËæ»ú³éÈ¡3¼þ£¬Ò²´ÓÒÒ³§µÄ10¼þÑùÆ·ÖÐÓзŻصÄËæ»ú³éÈ¡3¼þ£¬Çó³éµ½µÄÓÅµÈÆ·Êý¼×³§Ç¡±ÈÒÒ³§¶à1¼þµÄ¸ÅÂÊ£®£¨Ã¿´Î³éȡһ¼þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=sin£¨x-$\frac{3¦Ð}{2}$£©sinx-$\sqrt{3}$cos2x£¬x¡ÊR£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍ×î´óÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]Éϵĵ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¼¯ºÏA={x|-1¡Üx£¼2}£¬¼¯ºÏB={x|x£¼1}£¬ÔòA¡ÉB={x|-1¡Üx£¼1}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸