·ÖÎö £¨1£©¶ÔÒ»ÇÐÕýÕûÊýn¶¼ÓÐSn=n2+$\frac{1}{2}$an£®¿ÉµÃan+1=Sn+1-Sn£¬»¯¼òÕûÀí¼´¿ÉµÃ³ö£®
£¨2£©ÔÚSn=n2+$\frac{1}{2}$anÖУ¬Áîn=1£¬µÃa1=2£¬ÓÖa2+a1=6£¬½âµÃa2=4£®ÀûÓõÝÍÆ¹ØÏµ¿ÉµÃ£ºan+2-an=4£¬ÊýÁÐ{an}µÄÆæÊýÏîÓëżÊýÏî·Ö±ðΪ¹«²îΪ4µÄµÈ²îÊýÁУ¬¼´¿ÉµÃ³ö£®
£¨3£©f£¨n£©=£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬µÈ¼ÛÓÚ$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£®Áîg£¨n£©=$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡£¨$1-\frac{1}{{a}_{n}}$£©£¬Í¨¹ý×÷ÉÌÅÐ¶ÏÆäµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð £¨1£©Ö¤Ã÷£º¡ß¶ÔÒ»ÇÐÕýÕûÊýn¶¼ÓÐSn=n2+$\frac{1}{2}$an£®
¡àan+1=Sn+1-Sn=$£¨n+1£©^{2}+\frac{1}{2}{a}_{n+1}$-£¨n2+$\frac{1}{2}$an£©£¬
¡àan+1+an=4n+2£®
£¨2£©½â£ºÔÚSn=n2+$\frac{1}{2}$anÖУ¬Áîn=1£¬µÃa1=2£¬
ÓÖa2+a1=6£¬½âµÃa2=4£®
¡ßan+1+an=4n+2£¬an+2+an+1=4n+6£¬
Á½Ê½Ïà¼õ£¬µÃan+2-an=4£¬
¡àÊýÁÐ{an}µÄÆæÊýÏîÓëżÊýÏî·Ö±ðΪ¹«²îΪ4µÄµÈ²îÊýÁУ¬
¡àµ±nΪżÊýʱ£¬an=a2+$£¨\frac{n}{2}-1£©$¡Á4=2n£®
µ±nÎªÆæÊýʱ£¬n+1ΪżÊý£¬ÓÉÉÏʽ¼°£¨1£©Öª£ºan=4n+2-an+1=2n£¬
¡àÊýÁÐ{an}µÄͨÏʽÊÇan=2n£®
£¨3£©½â£ºf£¨n£©=£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¬
µÈ¼ÛÓÚ$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£®£¬
Áîg£¨n£©=$\sqrt{2n+1}$£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡£¨$1-\frac{1}{{a}_{n}}$£©£¬
ÔòÓÉ£¨2£©Öªg£¨n£©£¾0£¬
¡à$\frac{g£¨n+1£©}{g£¨n£©}$=$\frac{\sqrt{2n+3}£¨1-\frac{1}{{a}_{n+1}}£©}{\sqrt{2n+1}}$=$\frac{\sqrt{2n+3}£¨1-\frac{1}{2n+2}£©}{\sqrt{2n+1}}$=$\frac{\sqrt{£¨2n+2£©^{2}-1}}{2n+2}$£¼1£®
¡àg£¨n+1£©£¼g£¨n£©£¬¼´g£¨n£©µÄÖµËænµÄÔö´ó¶ø¼õС£®
¡àn¡ÊN*ʱ£¬g£¨n£©µÄ×î´óֵΪg£¨1£©=$\frac{\sqrt{3}}{2}$£®
Èô´æÔÚʵÊýa£¬·ûºÏÌâÒ⣬Ôò±ØÓÐ$\frac{2{a}^{2}-3}{2a}$$£¾\frac{\sqrt{3}}{2}$£¬
¼´a£¨a-$\sqrt{3}$£©$£¨a+\frac{\sqrt{3}}{2}£©$£¾0£®
½âµÃ$-\frac{\sqrt{3}}{2}$£¼a£¼0£¬»òa$£¾\sqrt{3}$£®
Òò´Ë£¬´æÔÚʵÊýa£¬·ûºÏÌâÒ⣬Æäȡֵ·¶Î§Îª$£¨-\frac{\sqrt{3}}{2}£¬0£©$¡È$£¨\sqrt{3}£¬+¡Þ£©$£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁеÄͨÏʽ¡¢¡°·ÅËõ·¨¡±¡¢²»µÈʽµÄ½â·¨¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ´æÔÚij¸öλÖã¬Ê¹µÃÖ±ÏßABºÍÖ±ÏßCD´¹Ö± | |
| B£® | ´æÔÚij¸öλÖã¬Ê¹µÃÖ±ÏßACºÍÖ±ÏßBD´¹Ö± | |
| C£® | ´æÔÚij¸öλÖã¬Ê¹µÃÖ±ÏßADºÍÖ±ÏßBC´¹Ö± | |
| D£® | ÎÞÂÛ·ÕÛµ½Ê²Ã´Î»Öã¬ÒÔÉÏÈý×éÖ±Ïß¾ù²»´¹Ö± |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{\sqrt{3}}{2}$ | B£® | $\frac{1}{2}$ | C£® | -$\frac{1}{2}$ | D£® | -$\frac{1}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com