1£®Ä³ÖÖ²úÆ·µÄÖÊÁ¿ÒÔÆäÖÊÁ¿Ö¸±êÖµºâÁ¿£¬ÖÊÁ¿Ö¸±êÖµÔ½´ó±íÃ÷ÖÊÁ¿Ô½ºÃ£¬ÇÒÖÊÁ¿Ö¸±êÖµ´óÓÚ17¿Ëʱ£¬¸Ã²úƷΪÓÅµÈÆ·£®ÏÖÔÚΪÁ˽â¼×¡¢ÒÒÁ½³§²úÆ·µÄÖÊÁ¿£¬´ÓÁ½³§Éú²úµÄ²úÆ·ÖзֱðËæ»ú³éÈ¡¸÷10¼þÑùÆ·£¬²âÁ¿ÑùÆ·µÄÖÊÁ¿Ö¸±êÖµ£¨µ¥Î»£º¿Ë£©•ÈçͼÊDzâÁ¿Êý¾ÝµÄ¾¥Ò¶Í¼£º
£¨1£©ÊÔÓÃÉÏÊöÑù±¾Êý¾Ý¹À¼ÆA¡¢BÁ½³§Éú²úµÄÓÅµÈÆ·ÂÊ
£¨2£©´Ó¼×³§10¼þÑùÆ·ÖгéÈ¡2¼þ£¬ÒÒ³§10¼þÖгéÈ¡1¼þ£¬Èô3¼þÖÐÓÅµÈÆ·µÄ¼þÊý¼ÇΪX£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨3£©´Ó¼×³§µÄ10¼þÑùÆ·ÖÐÓзŻصÄËæ»ú³éÈ¡3¼þ£¬Ò²´ÓÒÒ³§µÄ10¼þÑùÆ·ÖÐÓзŻصÄËæ»ú³éÈ¡3¼þ£¬Çó³éµ½µÄÓÅµÈÆ·Êý¼×³§Ç¡±ÈÒÒ³§¶à1¼þµÄ¸ÅÂÊ£®£¨Ã¿´Î³éȡһ¼þ£©

·ÖÎö £¨1£©¼×³§³éÈ¡µÄÑù±¾ÖÐÓÅµÈÆ·ÓÐ6¼þ£¬ÒÒ³§³éÈ¡µÄÑù±¾ÖÐÓÅµÈÆ·ÓÐ5¼þ£¬ÓÉ´ËÄܹÀ¼ÆA¡¢BÁ½³§Éú²úµÄÓÅµÈÆ·ÂÊ£®
£¨2£©XµÄȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
£¨3£©³éÈ¡µÄÓÅµÈÆ·Êý¼×³§Ç¡±ÈÒÒ³§¶à1¼þ°üÀ¨3¸öʼþ£¬¼´A=¡°³éÈ¡µÄÓÅµÈÆ·Êý¼×³§3¼þ£¬ÒÒ³§2¼þ¡±£¬B=¡°³éÈ¡µÄÓÅµÈÆ·Êý¼×³§2¼þ£¬ÒÒ³§1¼þ¡±£¬C=¡°³éÈ¡µÄÓÅµÈÆ·Êý¼×³§1¼þ£¬ÒÒ³§0¼þ¡±£®ÓÉ´ËÄÜÇó³ö³éÈ¡µÄÓÅµÈÆ·Êý¼×³§±ÈÒÒ³§¶à1¼þµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©¼×³§³éÈ¡µÄÑù±¾ÖÐÓÅµÈÆ·ÓÐ6¼þ£¬ÓÅµÈÆ·ÂÊΪ$\frac{6}{10}=\frac{3}{5}$£®
ÒÒ³§³éÈ¡µÄÑù±¾ÖÐÓÅµÈÆ·ÓÐ5¼þ£¬ÓÅµÈÆ·ÂÊΪ$\frac{5}{10}$=$\frac{1}{2}$£®¡­£¨2·Ö£©
£¨2£©XµÄȡֵΪ0£¬1£¬2£¬3£¬
P£¨X=0£©=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$•$\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{15}$£¬
P£¨X=1£©=$\frac{{C}_{6}^{1}•{C}_{4}^{1}}{{C}_{10}^{2}}$•$\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$+$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{3}$£¬
P£¨X=2£©=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$+$\frac{{C}_{6}^{1}•{C}_{4}^{1}}{{C}_{10}^{2}}$•$\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{13}{30}$£¬
P£¨X=3£©=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}•\frac{{C}_{5}^{1}}{{C}_{10}^{1}}$=$\frac{1}{6}$£¬¡­£¨6·Ö£©

X0123
P$\frac{1}{15}$$\frac{1}{3}$$\frac{13}{30}$$\frac{1}{6}$
E£¨X£©=$0¡Á\frac{1}{15}+1¡Á\frac{1}{3}+2¡Á\frac{13}{30}+3¡Á\frac{1}{6}$=$\frac{17}{10}$£®¡­£¨8·Ö£©
£¨3£©³éÈ¡µÄÓÅµÈÆ·Êý¼×³§Ç¡±ÈÒÒ³§¶à1¼þ°üÀ¨3¸öʼþ£¬
¼´A=¡°³éÈ¡µÄÓÅµÈÆ·Êý¼×³§3¼þ£¬ÒÒ³§2¼þ¡±£¬
B=¡°³éÈ¡µÄÓÅµÈÆ·Êý¼×³§2¼þ£¬ÒÒ³§1¼þ¡±£¬
C=¡°³éÈ¡µÄÓÅµÈÆ·Êý¼×³§1¼þ£¬ÒÒ³§0¼þ¡±£®
P£¨A£©=${C}_{3}^{3}£¨\frac{3}{5}£©^{3}$¡Á${C}_{3}^{2}£¨\frac{1}{2}£©^{2}£¨\frac{1}{2}£©$=$\frac{81}{1000}$£¬
P£¨B£©=${C}_{3}^{2}£¨\frac{3}{5}£©^{2}£¨\frac{2}{5}£©¡Á{C}_{3}^{1}£¨\frac{1}{2}£©£¨\frac{1}{2}£©^{2}$=$\frac{162}{1000}$£¬
P£¨C£©=${C}_{3}^{1}£¨\frac{3}{5}£©£¨\frac{2}{5}£©^{2}¡Á{C}_{3}^{0}£¨\frac{1}{2}£©^{3}$=$\frac{36}{1000}$£¬¡­£¨11·Ö£©
³éÈ¡µÄÓÅµÈÆ·Êý¼×³§±ÈÒÒ³§¶à1¼þµÄ¸ÅÂÊΪ£º
P£¨A£©+P£¨B£©+P£¨C£©=$\frac{81}{1000}+\frac{162}{1000}+\frac{36}{1000}$=$\frac{279}{1000}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÒ»¸öÔ²×¶ÄÚ½ÓÓÚÇòO£¨Ô²×¶µÄµ×ÃæÔ²Öܼ°¶¥µã¾ùÔÚÇòÃæÉÏ£©£¬ÈôÇòµÄ±íÃæ»ýΪ100¦Ð£¬Ô²×¶µÄ¸ßÊǵ×Ãæ°ë¾¶µÄ2±¶£¬ÔòÔ²×¶µÄ¸ßΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬¹ýÅ×ÎïÏßx2=4yµÄ¶Ô³ÆÖáÉÏÒ»µãP£¨0£¬m£©£¨m£¾0£©×÷Ö±Ïßl1£¬l1ÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£®
£¨¢ñ£©Èô$\overrightarrow{OA}•\overrightarrow{OB}$£¼0£¨OÎª×ø±êÔ­µã£©£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ò£©¹ýµãPÇÒÓël1´¹Ö±µÄÖ±Ïßl2ÓëÅ×ÎïÏß½»ÓÚC£¬DÁ½µã£¬ÉèAB£¬CDµÄÖеã·Ö±ðΪM£¬N£¬ÇóÖ¤£ºÖ±ÏßMN±Ø¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µã×ø±ê£¨ÓÃm±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ¶ÔÒ»ÇÐÕýÕûÊýn¶¼ÓÐSn=n2+$\frac{1}{2}$an£®
£¨1£©Ö¤Ã÷£ºan+1+an=4n+2£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©Éèf£¨n£©=£¨$1-\frac{1}{{a}_{1}}$£©£¨$1-\frac{1}{{a}_{2}}$£©¡­£¨$1-\frac{1}{{a}_{n}}$£©£¼$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$¶ÔÓÚÒ»ÇÐÕýÕûÊýn³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑ֪ʵÊýx£¬yÂú×㣺$\left\{{\begin{array}{l}{x-2y+1¡Ý0}\\{x£¼2}\\{x+y-1¡Ý0}\end{array}}\right.$£¬z=2x-2y-1£¬ÔòzµÄȡֵ·¶Î§ÊÇ[-$\frac{5}{3}$£¬5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èô¸´ÊýzÂú×㣨$\overline{z}$+2i-3£©£¨4+3i£©=3-4i£¬Ôò|z|=£¨¡¡¡¡£©
A£®$\sqrt{10}$B£®$\sqrt{13}$C£®3$\sqrt{2}$D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª¼¯ºÏA={x¡ÊZ|-$\frac{3}{2}$£¼x£¼3}£¬B={0£¬1£¬2£¬3£¬4}£¬Ôò¼¯ºÏA¡ÉBµÄ×Ó¼¯¸öÊýΪ£¨¡¡¡¡£©
A£®16B£®8C£®7D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®º¯Êýy=ln£¨x2-2£©+$\sqrt{1-x}$µÄ¶¨ÒåÓòΪ£¨-¡Þ£¬-$\sqrt{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸