精英家教网 > 高中数学 > 题目详情
17.数列{an}的通项公式an=tann•tan(n-1),证明对于任意n∈N+存在常数A、B使得Sn=Atann+Bn.

分析 通过两角差的正切公式变形可知an=$\frac{tann-tan(n-1)}{tan1}$-1,进而利用分组法求和即可.

解答 证明:∵tan(A-B)=$\frac{tanA-tanB}{1+tanA•tanB}$,
∴tanA•tanB=$\frac{tanA-tanB}{tan(A-B)}$-1,
又∵数列{an}的通项公式an=tann•tan(n-1),
∴an=$\frac{tann-tan(n-1)}{tan[n-(n-1)]}$-1=$\frac{tann-tan(n-1)}{tan1}$-1,
∴Sn=$\frac{1}{tan1}$[tan1-tan0+tan2-tan1+tan3-tan2+…+tann-tan(n-1)]-n
=$\frac{1}{tan1}$(tann-tan0)-n
=$\frac{1}{tan1}$•tann-n,
令A=$\frac{1}{tan1}$,B=-1,则对于任意n∈N+存在常数A、B使得Sn=Atann+Bn.

点评 本题考查数列的求和,涉及两角差的正切公式,考查并项相消法求数列的和,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知数列{an}满足an+1+an=n,若a1=2,则a8-a4=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(2-x)(x≤0)}\\{f(x-1)-f(x-2)(x>0)}\end{array}\right.$,则f(2016)的值为log32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=2,an>0,且$\frac{{{a}_{n+1}}^{2}}{4}$-$\frac{{{a}_{n}}^{2}}{4}$=1(n∈N+
(1)求数列{an}的通项公式;
(2)若bn=($\frac{2}{{a}_{n}}$)4.当n≥2时,求证:b2+b3+…+bn≥$\frac{n-1}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,若2(b2+2accos2B)=2a2+2c2-ac.
(I)求角B的大小;
(Ⅱ)若S△ABC=$\sqrt{3}$,求asinA+csinC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了解甲、乙两校高三学生某次数学联赛成绩情况,从这两学校中分别随机抽取30名学生成绩(百分制)作为样本,样本数据如下:
甲校:41 45 54 56 60 63 63 65 64 66 62 67 70 70 72
     72 74 74 81 83 85 85 87 86 86 89 91 92 98 99
乙校:46 55 62 64 70 73 72 72 73 75 77 77 79 79 79
     82 83 81 84 85 84 88 87 89 88 84 91 94 96 98
(1)若甲校所有参赛学生中每名学生被抽取的概率为0.15,求甲校高三年级参赛学生总人数;
(2)根据两组数据完成两校学生成绩的茎叶图;并通过茎叶图比较两校学生成绩的平均分及分散程度(不要求计算出具体值,给出结论即可);
(3)从样本中甲乙两校高三年级参赛学生成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={x|x2-2x<0},N={x|y=lg(4-x2)},则(  )
A.M∪N=MB.(∁RM)∩N=RC.(∁RM)∩N=∅D.M∩N=M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$在正方形网络中的位置如图所示,若$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ,μ∈R),则$\frac{λ}{μ}$=(  )
A.-8B.-4C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.旅游体验师小李受某旅游网站邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方法数为(  )
A.24B.18C.16D.10

查看答案和解析>>

同步练习册答案