精英家教网 > 高中数学 > 题目详情

已知函数, 数列满足
(1)求数列的通项公式;
(2)令,若对一切成立,求最小正整数m.

(1);(2)

解析试题分析:(1)由可知数列为等差数列,易求得通项公式
(2)由第(1)的结果
所以可用拆项法求和进而求得的最小值.
解:(1)
是以为公差,首项的等差数列

(2)当时,
时,上式同样成立

对一切成立,
递增,且

考点:1、等差数列通项公式;2、拆项法求特列数列的前项和;3、含参数的不等式恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列是等差数列,数列是各项都为正数的等比数列,且

(1)求数列,数列的通项公式;
(2)求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1).
(1)求证:数列是等差数列;
(2)求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·安徽高考)设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都为正数,
(1)若数列是首项为1,公差为的等差数列,求
(2)若,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线,直线过抛物线的焦点,交轴于点.

(1)求证:
(2)过作抛物线的切线,切点为(异于原点),
(ⅰ)是否恒成等差数列,请说明理由;
(ⅱ)重心的轨迹是什么图形,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足
(1)求证:数列是等差数列,并求数列的通项公式;
(2)设数列满足,对于任意给定的正整数,是否存在正整数(),使得成等差数列?若存在,试用表示;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.
求第2行和第3行的通项公式
证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于)的表达式;
(3)若,试求一个等比数列,使得,且对于任意的,均存在实数?,当时,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,对任意的成等比数列,公比为成等差数列,公差为,且
(1)写出数列的前四项;
(2)设,求数列的通项公式;
(3)求数列的前项和

查看答案和解析>>

同步练习册答案