精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+2x+a,x<0
lnx,x>0
,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2,若函数f(x)的图象在点A,B处的切线重合,则a的取值范围是
 
考点:利用导数研究曲线上某点切线方程
专题:综合题,导数的综合应用
分析:先根据导数的几何意义写出函数f(x)在点A、B处的切线方程,再利用两直线重合的充要条件列出关系式,从而得出a=lnx2+(
1
2x2
-1)2-1,最后利用导数研究它的单调性和最值,即可得出a的取值范围.
解答: 解:当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y-(x12+2x1+a)=(2x1+2)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y-lnx2=
1
x2
(x-x2);
两直线重合的充要条件是
1
x2
=2x1+2①,lnx2-1=-x12+a②,
由①及x1<0<x2得0<
1
x2
<2,由①②得a=lnx2+(
1
2x2
-1)2-1=-ln
1
x2
+
1
4
1
x2
-2)2-1,
令t=
1
x2
,则0<t<2,且a=
1
4
t2-t-lnt,设h(t)=
1
4
t2-t-lnt,(0<t<2)
则h′(t)=
1
2
t-1-
1
t
=
(t-1)2-3
2t
<0,∴h(t)在(0,2)为减函数,
则h(t)>h(2)=-ln2-1,∴a>-ln2-1,
∴若函数f(x)的图象在点A,B处的切线重合,a的取值范围(-ln2-1,+∞).
故答案为:(-ln2-1,+∞).
点评:本题主要考查了导数的几何意义等基础知识,考查了推理论证能力、运算能力、创新意识,考查了函数与方程、分类与整合、转化与化归等思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x-
3
sin2x,x∈R.
(1)求函数f(x)的单调递减区间;
(2)设θ∈(
π
3
12
),且f(θ)=-
4
3
,求cos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x-2
-
1
3x-x2
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为l,公比是正数的等比数列{bn}的前n项和为Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

一同学在电脑中打出如下若干个圈,○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2014个圈中有
 
个●.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x,等比数列{an}的公比为2,若f(a2•a4…a10)=25,则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,3a1
1
2
a3,2a2成等差数列,则
a2013+a2014
a2011+a2012
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=
1
x
,则
lim
△x→0
f(4+△x)-f(4)
△x
的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+x-m在(1,2)内有零点,g(x)=ln(x-m)在(4,6)内有零点,若m为整数,则m的值为
 

查看答案和解析>>

同步练习册答案