6£®Öйú¸ßÌúµÄij¸öͨѶÆ÷²ÄÖÐÅäÖÃÓÐ9¸öÏàͬµÄÔª¼þ£¬¸÷×Ô¶ÀÁ¢¹¤×÷£¬Ã¿¸öÔª¼þÕý³£¹¤×÷µÄ¸ÅÂÊΪp£¨0£¼p£¼1£©£¬ÈôͨѶÆ÷еÖÐÓг¬¹ýÒ»°ëµÄÔª¼þÕý³£¹¤×÷£¬ÔòͨѶÆ÷еÕý³£¹¤×÷£¬Í¨Ñ¶Æ÷еÕý³£¹¤×÷µÄ¸ÅÂÊΪͨѶÆ÷еµÄÓÐЧÂÊ
£¨¢ñ£©ÉèͨѶÆ÷еÉÏÕý³£¹¤×÷µÄÔª¼þ¸öÊýΪX£¬ÇóXµÄÊýѧÆÚÍû£¬²¢Çó¸ÃͨѶÆ÷еÕý³£¹¤×÷µÄ¸ÅÂÊP¡ä£¨ÁдúÊýʽ±íʾ£©
£¨¢ò£©ÏÖΪ¸ÄÉÆÍ¨Ñ¶Æ÷еµÄÐÔÄÜ£¬ÄâÔö¼Ó2¸öÔª¼þ£¬ÊÔ·ÖÎöÕâÑù²Ù×÷ÄÜ·ñÌá¸ßͨѶÆ÷еµÄÓÐЧÂÊ£®

·ÖÎö £¨¢ñ£©Ê×ÏÈÓɶþÏî·Ö²¼¼°ÆäÆÚÍû¹«Ê½ÇóµÃÆÚÍû£¬È»ºóÀûÓöÀÁ¢Öظ´ÊÔÑéÇóµÃͨѶÆ÷еÕý³£¹¤×÷µÄ¸ÅÂÊP¡ä£»
£¨¢ò£©ÀûÓû¥³âʼþµÄ¸ÅÂʼӷ¨¹«Ê½¼°¶ÀÁ¢Öظ´ÊÔÑéµÄ¸ÅÂʹ«Ê½ÇóµÃÔö¼Ó2¸öÔª¼þºóͨѶÆ÷еÕý³£¹¤×÷µÄ¸ÅÂÊ£¬×÷²îºóµÃµ½¹ØÓÚpµÄ´úÊýʽ£¬È»ºó·ÖpµÄ²»Í¬·¶Î§µÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºX¡«B£¨9£¬p£©£¬¹ÊEX=9p£®
ÔÚͨѶÆ÷еÅäÖõÄ9¸öÔª¼þÖУ¬Ç¡ÓÐ5¸öÔª¼þÕý³£¹¤×÷µÄ¸ÅÂÊΪ£º${C}_{9}^{5}•{p}^{5}•£¨1-p£©^{4}$£®
ÔÚͨѶÆ÷еÅäÖõÄ9¸öÔª¼þÖУ¬Ç¡ÓÐ6¸öÔª¼þÕý³£¹¤×÷µÄ¸ÅÂÊΪ£º${C}_{9}^{6}•{p}^{6}•£¨1-p£©^{3}$£®
ÔÚͨѶÆ÷еÅäÖõÄ9¸öÔª¼þÖУ¬Ç¡ÓÐ7¸öÔª¼þÕý³£¹¤×÷µÄ¸ÅÂÊΪ£º${C}_{9}^{7}•{p}^{7}•£¨1-p£©^{2}$£®
ÔÚͨѶÆ÷еÅäÖõÄ9¸öÔª¼þÖУ¬Ç¡ÓÐ8¸öÔª¼þÕý³£¹¤×÷µÄ¸ÅÂÊΪ£º${C}_{9}^{8}•{p}^{8}•£¨1-p£©^{1}$£®
ÔÚͨѶÆ÷еÅäÖõÄ9¸öÔª¼þÖУ¬Ç¡ÓÐ9¸öÔª¼þÕý³£¹¤×÷µÄ¸ÅÂÊΪ£º${C}_{9}^{9}•{p}^{9}•£¨1-p£©^{0}$£®
ͨѶÆ÷еÕý³£¹¤×÷µÄ¸ÅÂÊP¡ä=$\sum_{k=5}^{9}{C}_{9}^{k}•{p}^{k}•£¨1-p£©^{9-k}$£»
£¨¢ò£©µ±µç·°åÉÏÓÐ11¸öÔª¼þʱ£¬¿¼ÂÇǰ9¸öÔª¼þ£¬
ΪʹͨѶÆ÷еÕý³£¹¤×÷£¬Ç°9¸öÔª¼þÖÐÖÁÉÙÓÐ4¸öÔª¼þÕý³£¹¤×÷£®
¢ÙÈôǰ9¸öÔªËØÓÐ4¸öÕý³£¹¤×÷£¬ÔòËüµÄ¸ÅÂÊΪ£º${C}_{9}^{4}•{p}^{4}•£¨1-p£©^{5}$£®
´ËʱºóÁ½¸öÔª¼þ¶¼±ØÐëÕý³£¹¤×÷£¬ËüµÄ¸ÅÂÊΪ£º$[{C}_{9}^{4}•{p}^{4}•£¨1-p£©^{5}]•$p2£»
¢ÚÈôǰ9¸öÔªËØÓÐ5¸öÕý³£¹¤×÷£¬ÔòËüµÄ¸ÅÂÊΪ£º${C}_{9}^{5}•{p}^{5}£¨1-p£©^{4}$£®
´ËʱºóÁ½¸öÔª¼þÖÁÉÙÓÐÒ»¸öÕý³£¹¤×÷£¬ËüµÄ¸ÅÂÊΪ£º$[{C}_{9}^{5}•{p}^{5}£¨1-p£©^{4}]•[1-£¨1-p£©^{2}]$£»
¢ÛÈôǰ9¸öÔªËØÖÁÉÙÓÐ6¸öÕý³£¹¤×÷£¬ÔòËüµÄ¸ÅÂÊΪ£º${P}^{¡ä}-{C}_{9}^{5}•{p}^{5}•£¨1-p£©^{4}$£»
´ËʱͨѶÆ÷еÕý³£¹¤×÷£¬¹ÊËüµÄ¸ÅÂÊΪ£º
P¡å=$[{C}_{9}^{4}•{p}^{4}•£¨1-p£©^{5}]•$p2+$[{C}_{9}^{5}•{p}^{5}£¨1-p£©^{4}]•[1-£¨1-p£©^{2}]$+${P}^{¡ä}-{C}_{9}^{5}•{p}^{5}•£¨1-p£©^{4}$£¬
¿ÉµÃP¡å-P¡ä=$[{C}_{9}^{4}•{p}^{4}•£¨1-p£©^{5}]•$p2+$[{C}_{9}^{5}•{p}^{5}£¨1-p£©^{4}]•[1-£¨1-p£©^{2}]$-${C}_{9}^{5}•{p}^{5}•£¨1-p£©^{4}$£¬
=${p}^{5}£¨1-p£©^{4}•{C}_{9}^{5}[p£¨1-p£©+1-£¨1-p£©^{2}-1]$=${p}^{5}£¨1-p£©^{4}•{C}_{9}^{5}£¨2p-1£©$£®
¹Êµ±p=$\frac{1}{2}$ʱ£¬P¡å=P¡ä£¬¼´Ôö¼Ó2¸öÔª¼þ£¬²»¸Ä±äͨѶÆ÷еµÄÓÐЧÂÊ£»
µ±0£¼p$£¼\frac{1}{2}$ʱ£¬P¡å£¼P¡ä£¬¼´Ôö¼Ó2¸öÔª¼þ£¬Í¨Ñ¶Æ÷еµÄÓÐЧÂʽµµÍ£»
µ±p$£¾\frac{1}{2}$ʱ£¬P¡å£¾P¡ä£¬¼´Ôö¼Ó2¸öÔª¼þ£¬Í¨Ñ¶Æ÷еµÄÓÐЧÂÊÌá¸ß£®

µãÆÀ ±¾Ì⿼²é¶þÏî·Ö²¼£¬¿¼²éÁËÏ໥¶ÀÁ¢Ê¼þ¼°Æä¸ÅÂÊ£¬¹Ø¼üÊǶÔÌâÒâµÄÀí½â£¬Êô¸ÅÂÊͳ¼Æ²¿·ÖÄѶȽϴóµÄÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÓëÏòÁ¿$\overrightarrow{a}$=£¨3£¬4£©·´ÏòµÄµ¥Î»ÏòÁ¿ÊÇ£¨-$\frac{3}{5}$£¬$-\frac{4}{5}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx£¬Èôf£¨x£©ÊÇÆæº¯Êý£¬Ôò£¨¡¡¡¡£©
A£®a=0£¬b=0B£®a=1£¬b=0C£®a=0£¬b=1D£®a=0£¬b¡ÊR

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®É躯Êýf£¨x£©=lnx+$\frac{m}{x}$+1£¬m¡ÊR£®
£¨¢ñ£©µ±m=e£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©Ê±£¬Çóf£¨x£©µÄ×îСֵ£»
£¨¢ò£©ÌÖÂÛº¯Êýg£¨x£©=f¡ä£¨x£©-$\frac{x}{3}$ÁãµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ax2-£¨2a+1£©x+lnx£¬g£¨x£©=ex-x-1£®
£¨1£©µ±a=1ʱ£¬Çóf£¨x£©µÄ¼«Öµ£»
£¨2£©Èô¶Ô?x1¡Ê£¨0£¬+¡Þ£©£¬x2¡ÊR¶¼ÓÐf£¨x1£©¡Üg£¨x2£©³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=lnx-$\frac{a}{x}$+$\frac{a}{{x}^{2}}$£¨a¡ÊR£©£®
£¨1£©Èôx=1ÊǺ¯Êýf£¨x£©µÄÒ»¸ö¼«Öµµã£¬ÇóaµÄÖµ£»
£¨2£©Èôf£¨x£©ÔÚ[1£¬+¡Þ£©ÉÏ´æÔÚµ¥µ÷¼õÇø¼ä£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬Ö¤Ã÷£º$\frac{1-{x}^{2}-£¨{x}^{2}+x£©£¨f£¨x£©+\frac{1}{x}-\frac{1}{{x}^{2}}£©}{{e}^{x}}$£¼1+e-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®É躯Êýf£¨n£©=£¨1+$\frac{1}{n}$£©n-n£¬ÆäÖÐnΪÕýÕûÊý£®
£¨1£©Çóf£¨1£©¡¢f£¨2£©¡¢f£¨3£©µÄÖµ£»
£¨2£©²ÂÏëÂú×ã²»µÈʽf£¨n£©£¼0µÄÕýÕûÊýnµÄ·¶Î§£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¡÷ABCÖУ¬ÒÑÖªÏÂÁÐÌõ¼þ£¬½âÈý½ÇÐΣ¨½Ç¶È¾«È·µ½1¡ã£¬±ß³¤¾«È·µ½1cm£©£º
£¨1£©b=26cm£¬c=15cm£¬C=23¡ã£»
£¨2£©a=15cm£¬b=10cm£¬A=60¡ã£»
£¨3£©b=40cm£¬c=20cm£¬C=45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®É躯Êýf£¨x£©=$\frac{1}{2}$x2-£¨a+1£©x+alnx£¨a¡ÊR£©
£¨¢ñ£©Èôa£¾0£¬ÌÖÂÛº¯Êýf£¨x£©µÄ¼«Öµ
£¨¢ò£©Èô¶ÔÓÚÈÎÒâa¡Ê£¨3£¬5£©¼°ÈÎÒâx1£¬x2¡Ê[1£¬3]£¬ºãÓÐma3-aln3£¾|f£¨x1£©-f£¨x2£©|³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸