分析 (Ⅰ)函数f(x)的定义域为{x|x>0},f′(x)=$\frac{2}{x}$-a,当x$∈(0,\frac{2}{a})$时f′(x)>0,x$∈(\frac{2}{a},+∞)$时,f′(x)<0即可得到单调区间.
(Ⅱ)由(Ⅰ)得要使 f(x)有两个不同零点 x1、x2,则a>0,可得2lnx1-ax1+1=0,2lnx2-ax2+1=0⇒a=$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$,$f′(\frac{{x}_{1}+2{x}_{2}}{2})$=$\frac{4}{{x}_{1}+2{x}_{2}}$-$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{{x}_{1}-{x}_{2}}$[$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)],要证证:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0,只需证$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)>0.即证$\frac{4(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+2}-2ln\frac{{x}_{1}}{{x}_{2}}$>0,令$\frac{{x}_{1}}{{x}_{2}}=t,(0<t<1)$,g(t)=$\frac{4(t-1)}{t+2}-2lnt$(0<t<1),利用导数即可得证.
解答 解:(Ⅰ)函数f(x)的定义域为{x|x>0},f′(x)=$\frac{2}{x}$-a
令f′(x)=$\frac{2}{x}$-a=0,解得x=$\frac{2}{a}$>0
当x$∈(0,\frac{2}{a})$时f′(x)>0,x$∈(\frac{2}{a},+∞)$时,f′(x)<0
∴函数f(x)的单增区间(0,$\frac{2}{a}$):f(x)的单减区间:($\frac{2}{a}$,+∞),
(Ⅱ)由(Ⅰ)得要使 f(x)有两个不同零点 x1、x2,则a>0,
可得2lnx1-ax1+1=0,2lnx2-ax2+1=0,
⇒a=$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$,
∴$f′(\frac{{x}_{1}+2{x}_{2}}{2})$=$\frac{4}{{x}_{1}+2{x}_{2}}$-$\frac{2ln{x}_{1}-2ln{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{1}{{x}_{1}-{x}_{2}}$[$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)],
要证证:f'($\frac{{{x_1}+2{x_2}}}{2}$)<0,只需证$\frac{4({x}_{1}-{x}_{2})}{{x}_{1}+2{x}_{2}}$-2(lnx1-lnx2)>0.
即证$\frac{4(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+2}-2ln\frac{{x}_{1}}{{x}_{2}}$>0,
令$\frac{{x}_{1}}{{x}_{2}}=t,(0<t<1)$,
g(t)=$\frac{4(t-1)}{t+2}-2lnt$,(0<t<1).
g′(t)=$\frac{-2({t}^{2}-2t+4)}{(t+2)^{2}t}<0$,
∴g(t)在(0,1)上单调递增,g(1)=0,
∴g(t)<0.
故f'($\frac{{{x_1}+2{x_2}}}{2}$)<0.
点评 本题考查了导数的应用,利用导数求最值、单调性,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1:2 | B. | 1:4 | C. | 1:6 | D. | 1:8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$+$\frac{3}{2}$i | B. | $\frac{1}{2}$-$\frac{3}{2}$i | C. | 1+3i | D. | 1-3i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| $\overline{x}$ | $\overline{y}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ |
| 6 | 500 | 20 | 1300 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 数学 物理 | 85~100分 | 85分以下 | 合计 |
| 85~100分 | 37 | 85 | 122 |
| 85分以下 | 35 | 143 | 178 |
| 合计 | 72 | 228 | 300 |
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| A. | 0.5% | B. | 1% | C. | 2% | D. | 5% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com