精英家教网 > 高中数学 > 题目详情
8.在等比数列{an}中,S3=1,S6=4,则a10+a11+a12的值是(  )
A.81B.64C.32D.27

分析 由等比数列{an}的性质可得:S3,S6-S3,S9-S6,S12-S9成等比数列.即可得出.

解答 解:由等比数列{an}的性质可得:S3,S6-S3,S9-S6,S12-S9成等比数列.
∴(4-1)2=1×(S9-4),$({S}_{9}-4)^{2}$=(4-1)×(S12-S9),
解得S9=13,
∴a10+a11+a12=S12-S9=$\frac{{9}^{2}}{3}$=27.
故选:D.

点评 本题考查了等比数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.执行如图所示的程序框图,则输出的i=13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}的各项均为正数,且${a_3}^2=9{a_2}{a_6}$,则数列的公比q为(  )
A.$-\frac{1}{9}$B.$\frac{1}{9}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,边长为a的正方体ABCD-A1B1C1D1
(Ⅰ)求证:AC1⊥BD;
(Ⅱ)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1+lnx}{x+1-a}$(a为常数),且曲线y=f(x) 在x=1处的切线与y轴垂直.
(1)求实数a的值;
(2)如果当x≥1时,不等式$f(x)≥\frac{m}{x+1}$恒成立,求实数m的最大值;
(3)求证:ln2018>2017$-2(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+…+\frac{2017}{2018})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆心为C的圆过原点O(0,0),且直线2x-y+2=0与圆C相切于点P(0,2).
(1)求圆C的方程;
(2)已知过点Q(0,1)的直线l的斜率为k,且直线l与圆C相交于A,B两点.
①若k=2,求弦AB的长;
②若圆C上存在点D,使得$\overrightarrow{CA}$+$\overrightarrow{CB}$=$\overrightarrow{CD}$,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数y=$\sqrt{3}$cos(2x-$\frac{π}{6}$)+2,求:
(1)函数最大值及取得最大值时对应的x的集合;
(2)图象的对称中心和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={1,3},$B=\{x|0<lg(x+1)<\frac{1}{2},x∈Z\}$,则A∩B=(  )
A.{1}B.{1,3}C.{1,2,3}D.{1,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点M,N分别是AB,PC的中点,且PA=AD
(1)求证:MN∥平面PAD        
(2)求证:平面PMC⊥平面PCD.

查看答案和解析>>

同步练习册答案