精英家教网 > 高中数学 > 题目详情
11.已知集合A={x|a≤x≤a+3},B={x|x2-4x-5>0}.
(I)  若A∩B=∅,求实数a的取值范围;
(II) 若A∪B=B,求实数a的取值范围.

分析 (1)化简集合B,根据A∩B=∅且A≠∅列出不等式组,求出a≤2;
(2)根据A∪B=B,得出A⊆B,列出不等式求出a的解集.

解答 解:(1)集合A={x|a≤x≤a+3},
B={x|x2-4x-5>0}={x|x<-1或x>5},
∵A∩B=∅,A≠∅,
∴$\left\{{\begin{array}{l}{a≥-1}\\{a+3≤5}\end{array}}\right.$,
解得-1≤a≤2;
(2)∵A∪B=B,
∴A⊆B,
∴a+3<-1或a>5,
解得a<-4或a>5.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx(a>0),e为自然对数的底数.
(1)当x>0时,求证:f(x)≥a(1-$\frac{1}{x}$);
(2)在区间(1,e)上$\frac{f(x)}{x-1}$>1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知三次函数f(x)=ax3+bx(a>0),下列命题正确的是①②.
①函数f(x)关于原点(0,0)中心对称;
②以A(xA,f(xA)),B(xB,f(xB))两不同的点为切点作两条互相平行的切线,分别与f(x)交于C,D两点,则这四个点的横坐标满足关系(xC-xB):(xB-xA):(xA-xD)=1:2:1;
③以A(x0,f(x0))为切点,作切线与f(x)图象交于点B,再以点B为切点作直线与f(x)图象交于点C,再以点C作切点作直线与f(x)图象交于点D,则D点横坐标为-6x0
④若b=-2$\sqrt{2}$,函数f(x)图象上存在四点A,B,C,D,使得以它们为顶点的四边形有且仅有一个正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若A∩B=B,则实数m的取值范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,网格纸上小正方形变长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体体积为(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.8D.$\frac{8\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|0≤x≤2},B={y|1≤y≤2},若对于函数y=f(x),其定义域为A,值域为B,则这个函数的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=lnx+$\frac{a}{x}$,x∈(0,3],其图象上任意一点P(x0,y0)处的切线的斜率k≤$\frac{1}{2}$恒成立,则实数a的取值范围是a≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.a2>b2C.2a>2bD.lga>lgb

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=logax,g(x)=loga(2x+t-2)2,(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2]时F(x)=g(x)-f(x)有最小值为2,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
(备注:函数y=x+$\frac{1}{x}$在区间(0,1)上单调递减,在区间(1,+∞)上单调递增).

查看答案和解析>>

同步练习册答案