精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-x2,函数g(x)=2ax-3a+2(a>0),若对任意x1∈[0,1],存在x2∈[
1
2
,1],使得f(x1)=g(x2)成立,则实数a的值是
 
考点:函数恒成立问题
专题:函数的性质及应用
分析:由任意的x1∈[0,1],都存在x2∈[
1
2
,1],使得f(x1)=g(x2),可得f(x)=1-x2在x1∈[0,1]的值域为g(x)=2ax-3a+2在x2∈[
1
2
,1]的值域的子集,构造关于a的不等式组,可得结论.
解答: 解:当x1∈[0,1]时,由f(x)=1-x2得,
f(x1)∈[0,1],
∵x2∈[
1
2
,1],又a>0,
∴g(x2)∈[2-2a,2-a],
∵对任意的x1∈[0,1],都存在x2∈[
1
2
,1],使得f(x1)=g(x2),
∴[0,1]⊆[2-2a,2-a],
2-2a≤0
2-a≥1
a≥1
a≤1

∴a=1,
故答案为:1.
点评:本题考查的知识点是二次函数、一次函数在闭区间上的最值问题,其中根据已知条件分析出“f(x)=1-x2在x1∈[0,1]的值域为g(x)=2ax-3a+2在x2∈[
1
2
,1]的值域的子集”是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果执行如图所示的框图,输入如下四个复数:
(1)z=
1
2
i;(2)-
1
4
+
3
4
i;(3)
2
2
+
1
2
i;(4)z=
1
2
-
3
2
i
那么输出的复数是(  )
A、(1)B、(2)
C、(3)D、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M为PB的中点,N在BC上,且AN=BN.
(Ⅰ)求证:AB⊥MN;
(Ⅱ)求点P到平面NMA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+y2=1,点P在直线l:x+y+1=0上,若过点P存在直线m与圆C交于A、B两点,且点A为PB的中点,则点P横坐标x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=100,an+1-an=2n,则
an
n
的最小值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图输出的T的值为(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是非零向量,则“
a
-
b
=
0
”是“
a
b
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

某园艺师培育了两种珍稀树苗A与B,株数分别为12与18,现将这30株树苗的高度编写成如茎叶图(单位:cm):

在这30株树苗中,树高在175cm以上(包括175cm)定义为“生长良好”,树高在175cm以下(不包括175cm)定义为“非生长良好”,且只有“B生长良好”的才可以出售.
(1)对于这30株树苗,如果用分层抽样的方法从“生长良好”和“非生长良好”中共抽取5株,再从这5株中任选2株,那么至少有一株“生长良好”的概率是多少?
(2)若从所有“生长良好”中选3株,用X表示所选中的树苗中能出售的株树,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设u=(x,y)=|ex-y|-y|x-lny|,x,y∈R.
(1)若a>0,令f(x)=(x,a),判断f(x)的单调性;
(2)若0<a<b,令F(x)=u(x,a)-u(x,b),试求函数F(x)的最小值;
(3)记(2)中的最小值为T(a,b),证明:T(a,b)>0.

查看答案和解析>>

同步练习册答案