精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin2x-2sin2x.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)求函数f(x)的零点的集合.
分析:(Ⅰ)先根据二倍角公式和两角和与差的公式进行化简,再由正弦函数的最值可得到答案.
(Ⅱ)令f(x)=0可得到2
3
sin xcos x=2sin2x,进而可得到sin x=0或tan x=
3
,即可求出对应的x的取值集合,得到答案.
解答:解:(Ⅰ)∵f(x)=
3
sin2x-2sin2x=
3
sin2x+cos2x-1=2sin(2x+
π
6
)-1
故函数f(x)的最大值等于2-1=1
(Ⅱ)由f(x)=0得2
3
sin xcos x=2sin2x,于是sin x=0,或
3
cos x=sin x即tan x=
3

由sin x=0可知x=kπ;
由tan x=
3
可知x=kπ+
π
3

故函数f(x)的零点的集合为{x|x=kπ或x=kπ+
π
3
,k∈Z}
点评:本题主要考查二倍角公式、两角和与差的正弦公式的应用和正弦函数的基本性质.三角函数是高考的重点,每年必考,要强化复习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案