【题目】已知椭圆
,右顶点
,上顶点为B,左右焦点分别为
,且
,过点A作斜率为
的直线l交椭圆于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)设P为
的中点,是否存在定点Q,对于任意的
都有
?若存在,求出点Q;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个多面体的直观图及三视图如图所示,其中M ,N 分别是AF、BC 的中点
![]()
![]()
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内动点
与点
,
连线的斜率之积为
.
(1)求动点
的轨迹
的方程;
(2)过点
的直线与曲线
交于
,
两点,直线
,
与直线
分别交于
,
两点.求证:以
为直径的圆恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆E:
的离心率是
,短轴长为2,若点A,B分别是椭圆E的左右顶点,动点
,
,直线
交椭圆E于P点.
(1)求椭圆E的方程
(2)①求证:
是定值;
②设
的面积为
,四边形
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】各项为正数的数列
如果满足:存在实数
,对任意正整数n,
恒成立,且存在正整数n,使得
或
成立,则称数列
为“紧密数列”,k称为“紧密数列”
的“紧密度”.已知数列
的各项为正数,前n项和为
,且对任意正整数n,
(A,B,C为常数)恒成立.
(1)当
,
,
时,
①求数列
的通项公式;
②证明数列
是“紧密度”为3的“紧密数列”;
(2)当
时,已知数列
和数列
都为“紧密数列”,“紧密度”分别为
,
,且
,
,求实数B的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程
(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:
.
Ⅰ
直线l的参数方程化为极坐标方程;
Ⅱ
求直线l与曲线C交点的极坐标
其中
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com