【题目】已知平面内动点
与点
,
连线的斜率之积为
.
(1)求动点
的轨迹
的方程;
(2)过点
的直线与曲线
交于
,
两点,直线
,
与直线
分别交于
,
两点.求证:以
为直径的圆恒过定点.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
,
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,点
为
上的动点,
为
的中点.
(1)请求出
点轨迹
的直角坐标方程;
(2)设点
的极坐标为
若直线
经过点
且与曲线
交于点
,弦
的中点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为
.
(1)设椭圆的左右焦点分别为
、
,点
在椭圆上运动,求
的值;
(2)设直线
和圆
相切,和椭圆交于
、
两点,
为原点,线段
、
分别和圆
交于
、
两点,设
、
的面积分别为
、
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①
,且
,②
,且
,③
,且
这三个条件中任选一个,补充在下面问题中,若问题中的
存在,求出
和数列
的通项公式与前
项和;若
不存在,请说明理由.
设
为各项均为正数的数列
的前
项和,满足________,是否存在
,使得数列
成为等差数列?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形组成的,将它沿虚线对折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______________
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,右顶点
,上顶点为B,左右焦点分别为
,且
,过点A作斜率为
的直线l交椭圆于点D,交y轴于点E.
(1)求椭圆C的方程;
(2)设P为
的中点,是否存在定点Q,对于任意的
都有
?若存在,求出点Q;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由
和
组成的一个平面图形,其中
是
的高,
,
,
,将
和
分别沿着
,
折起,使得
与
重合于点B,G为
的中点,如图2.
![]()
(1)求证:平面
平面
;
(2)若
,求点C到平面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com