精英家教网 > 高中数学 > 题目详情
17.函数f(x)=cos2x-sin2x的单调递减区间为$[kπ,kπ+\frac{π}{2}](k∈Z)$.

分析 由条件利用二倍角的余弦函数公式化简函数的解析式,再根据余弦函数的单调性求得函数的单调递减区间.

解答 解:对于函数y=cos2x-sin2x=cos2x,
令2kπ≤2x≤2kπ+π,k∈Z,
求得:kπ≤x≤kπ+$\frac{π}{2}$,k∈Z,
可得函数的单调递减区间是:$[kπ,kπ+\frac{π}{2}](k∈Z)$.
故答案为:$[kπ,kπ+\frac{π}{2}](k∈Z)$.

点评 本题主要考查两角和的正弦公式,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M为AB中点,将△ACM沿CM折起,使A,B之间的距离为2$\sqrt{2}$,则三棱锥M-ABC的外接球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsin($\frac{π}{6}$x+φ)(a,b为常数,0<φ<$\frac{π}{2}$).其中三个月份的月平均气温如表所示:
x5811
y133113
则该地2月份的月平均气温约为-5℃,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx-bcosx(其中a,b为正实数)的图象关于直线x=-$\frac{π}{6}$对称,且?x1,x2∈R,且x1≠x2,f(x1)f(x2)≤4恒成立,则下列结论正确的是(  )
A.$a=\sqrt{3},b=1$
B.不等式f(x1)f(x2)≤4取到等号时|x1-x2|的最小值为2π
C.函数f(x)的图象一个对称中心为 $({\frac{2}{3}π,0})$
D.函数f(x)在区间$[{\frac{π}{6},π}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{x^2}{4}$-ax+cosx(a∈R),x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(Ⅰ)若函数f(x)是偶函数,试求a的值;
(Ⅱ)当a>0时,求证:函数f(x)在(0,$\frac{π}{2}$)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是(  )
A.若m?α,n?β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则 m⊥n
C.若α⊥β,m⊥α,n∥β,则m∥nD.若α⊥β,α∩β=m,n⊥m,则n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={x|0≤x≤2},B={x|-1<x≤1},则A∩B={x|0≤x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等差数列{an}中,已知a1+a2=2,a2+a3=10,求通项公式an及前n项和Sn

查看答案和解析>>

同步练习册答案