精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,曲线C的方程为ρ2cos2θ+4ρ2sin2θ=4.直线l交曲线C与A、B两点.
(Ⅰ)求|AB|;
(Ⅱ)若点P为曲线C上任意一点,求△PAB面积的最大值.

分析 (I)曲线C的方程为ρ2cos2θ+4ρ2sin2θ=4,利用互化公式化为直角坐标方程,把直线l的参数方程$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),代入可得:t2-$\frac{16}{13}$=0,利用根与系数的关系及其|AB|=|t1-t2|即可得出.
(II)直线l的参数方程$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),消去参数t可得普通方程,设P(2cosθ,sinθ),利用点到直线的距离公式可得点P到直线l的距离d,利用和差公式、三角函数的单调性值域即可得出.利用S△PAB=$\frac{1}{2}$d|AB|即可得出面积最大值.

解答 解:(I)曲线C的方程为ρ2cos2θ+4ρ2sin2θ=4,化为直角坐标方程:x2+4y2=4,
把直线l的参数方程$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),代入可得:t2-$\frac{16}{13}$=0,解得t1=$\sqrt{\frac{16}{13}}$,t2=-$\sqrt{\frac{16}{13}}$,
∴|AB|=|t1-t2|=2$\sqrt{\frac{16}{13}}$=$\frac{8\sqrt{13}}{13}$.
(II)直线l的参数方程$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),
消去参数t可得普通方程:$\sqrt{3}$x-y=0,
设P(2cosθ,sinθ),
则点P到直线l的距离d=$\frac{|2\sqrt{3}cosθ-sinθ|}{2}$=$\frac{|\sqrt{13}sin(θ-φ)|}{2}$≤$\frac{\sqrt{13}}{2}$,
当sin(θ-φ)=±1时取等号.
∴S△PAB=$\frac{1}{2}$d|AB|$≤\frac{1}{2}$×$\frac{\sqrt{13}}{2}$×$\frac{8\sqrt{13}}{13}$=2.
∴△PAB面积的最大值是2.

点评 本题考查了参数方程化为普通方程、直线与曲线相交弦长公式、点到直线的距离公式、直角坐标方程与极坐标方程的互化、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5},M={3,4,5},N={1,2,5},则集合{1,2}可表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∪(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知直平行六面体ABCD-A1B1C1D1的底面边长均为2a,侧棱长均为a,∠ABC=60°,E、F、G分别是A1B、A1C、B1C1的中点.
(1)求证:EF∥平面BB1C1C;
(2)求证:平面A1EG⊥平面BB1C1C;
(3)求二面角A1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,以x轴正半轴为极轴,建立坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,设P为曲线C1上的动点,当点C1到曲线C2上点的距离最小时,点P的直角坐标为$(\frac{3}{2},\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(Ⅰ)若关于x的方程f(x)=$\frac{1}{2}$x2-$\frac{1}{a}$x+a有唯一实根,求(1+lna)a2的值;
(Ⅱ)若过原点作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$;
(Ⅲ)设g(x)=f(x+1)+ex,当x≥0时,g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求实数t的取值范围;
(Ⅱ)设g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函数|g(x)|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线$\left\{\begin{array}{l}x=3cosφ\\ y=2sinφ\end{array}\right.$(φ为参数)上的点到直线$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{{2\sqrt{5}}}{5}t\\ y=1-\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数)的距离为$\frac{{\sqrt{5}}}{2}$的点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,
(Ⅰ)求满足条件的实数x的集合A;
(Ⅱ)是否存在x,y,z∈A,使得x+y+z=1,且$\sqrt{3x+1}$+$\sqrt{3y+1}$+$\sqrt{3z+1}$=5同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四棱锥P-ABCD中,AB∥CD,AB⊥BC,AB=BC=2CD=2,AP=PB=3,PC=$\sqrt{5}$.
(Ⅰ)求证:直线PD⊥平面ABCD;
(Ⅱ) E是棱PB的中点,求直线PA与平面AEC所成的角的正弦值.

查看答案和解析>>

同步练习册答案