精英家教网 > 高中数学 > 题目详情
6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,以x轴正半轴为极轴,建立坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,设P为曲线C1上的动点,当点C1到曲线C2上点的距离最小时,点P的直角坐标为$(\frac{3}{2},\frac{1}{2})$.

分析 曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),消去参数化为普通方程.曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,展开化为:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=4$\sqrt{2}$,利用互化公式化为普通方程x+y-8=0.设与直线x+y-8=0平行且与椭圆相切的直线方程为:x+y+m=0.与椭圆方程联立,利用相切的性质解得m,即可得出.

解答 解:曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),消去参数化为:$\frac{{x}^{2}}{3}+{y}^{2}$=1.
曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,展开化为:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=4$\sqrt{2}$,化为x+y-8=0.
设与直线x+y-8=0平行且与椭圆相切的直线方程为:x+y+m=0.
联立$\left\{\begin{array}{l}{x+y+m=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$,化为:4x2+6mx+3m2-3=0,(*)
由△=36m2-16(3m2-3)=0,解得m=±2,
取m=-2,代入(*)可得:(2x-3)2=0,解得x=$\frac{3}{2}$,代入x+y-2=0,解得y=$\frac{1}{2}$.
∴切点P$(\frac{3}{2},\frac{1}{2})$满足条件.
故答案为:$(\frac{3}{2},\frac{1}{2})$.

点评 本题考查了参数方程与普通方程的互化、极坐标化为直角坐标方程、直线与椭圆相切的性质、平行线之间的距离,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=log2x,在区间[1,4]上随机取一个数x,使得f(x)的值介于-1到1之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在长方体ABCD-A1B1C1D1中,E,H分别是棱A1B1,D1C1上的动点(点E与B1不重合),且EH∥A1D1,过EH的动平面与棱BB1,CC1相交,交点分别为F,G.设AB=2AA1=2a,B1E+B1F=2a.在长方体ABCD-A1B1C1D1内随机选取一点,则该点取自于几何体A1ABFE-D1DCGH内的概率的最小值为(  )
A.$\frac{11}{12}$B.$\frac{3}{4}$C.$\frac{13}{16}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.A,B二面角α-l-β的棱l上两点,P∈α,Q∈β,且∠PAB=∠ABQ=$\frac{π}{3}$,PA=QB=$\frac{1}{2}$AB=2,PQ=3,则二面角α-l-β的余弦值是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-ax-1-$\frac{{x}^{2}}{2}$,x∈R.
(Ⅰ)若a=$\frac{1}{2}$,求函数f(x)的单调区间;
(Ⅱ)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)设函数F(x)=f(x)+f(-x)+2+x2,求证:F(1)•F(2)…F(n)>(en+1+2)${\;}^{\frac{n}{2}}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表
使用智能手机不使用智能手机合计
学习成绩优秀4812
学习成绩不优秀16218
合计201030
附表:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
经计算K2=10,则下列选项正确的是:(  )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,曲线C的方程为ρ2cos2θ+4ρ2sin2θ=4.直线l交曲线C与A、B两点.
(Ⅰ)求|AB|;
(Ⅱ)若点P为曲线C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x2-3x+lnx在x=$\frac{1}{2}$处取得极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1-$\frac{a}{x}$+aln$\frac{1}{x}$(a>0).
(1)当a=1时,求函数f(x)的极值;
(2)若函数f(x)在($\frac{1}{e}$,e)上有两个零点,求a的取值范围;
(3)已知n∈N且n≥3,求证:ln$\frac{n+1}{3}$<$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{n}$.

查看答案和解析>>

同步练习册答案