精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=log2x,在区间[1,4]上随机取一个数x,使得f(x)的值介于-1到1之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 以长度为测度,根据几何概型的概率公式即可得到结论.

解答 解:由-1≤log2x≤1,得$\frac{1}{2}≤x≤2$,
而$[{1,4}]∩[{\frac{1}{2},2}]=[{1,2}]$的区间长为1,
区间[1,4]长度为3,
所以所求概率为$\frac{1}{3}$.
故选A.

点评 本题主要考查几何概型的概率的计算,根据对数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.为了解2400名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,则分段间隔为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个盒子中装有四张卡片,每张卡片上写有一个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片,每张卡片被抽到的概率相等.
(1)若一次抽取三张卡片,求抽到的三张卡片上的数字之和大于7的概率;
(2)若第一次抽一张卡片,放回后搅匀再抽取一张卡片,求两次抽取中至少有一次抽到写有数字3的卡片的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z=$\frac{1}{1-i}$(其中i为虚数单位),$\overline z$为z的共轭复数,则下列结论正确的是(  )
A.$\overline z$=$\frac{1}{2}$-$\frac{1}{2}$iB.$\overline z$=-$\frac{1}{2}$-$\frac{1}{2}$iC.$\overline z$=-1-iD.$\overline z$=1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z满足z=i(1+z),则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,已知抛物线y2=4x的焦点为F,过F的直线AB交抛物线于A、B,交抛物线的准线于点C,若$\frac{{|{BF}|}}{{|{BC}|}}$=$\frac{1}{2}$,则|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5},M={3,4,5},N={1,2,5},则集合{1,2}可表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∪(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数$\frac{2+3i}{i^3}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,以x轴正半轴为极轴,建立坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,设P为曲线C1上的动点,当点C1到曲线C2上点的距离最小时,点P的直角坐标为$(\frac{3}{2},\frac{1}{2})$.

查看答案和解析>>

同步练习册答案