精英家教网 > 高中数学 > 题目详情
15.函数f(x)=x2-3x+lnx在x=$\frac{1}{2}$处取得极大值.

分析 求导得到$f′(x)=2x+\frac{1}{x}-3$,然后通分便可判断导数的符号,根据极大值的定义便可得出f(x)的极大值.

解答 解:$f′(x)=2x+\frac{1}{x}-3$=$\frac{2(x-1)(x-\frac{1}{2})}{x}$;
∴$x∈(0,\frac{1}{2})$时,f′(x)>0,$x∈(\frac{1}{2},1)$时,f′(x)<0;
∴$x=\frac{1}{2}$时f(x)取得极大值.
故答案为:$\frac{1}{2}$.

点评 本题考查基本初等函数导数的求法,二次函数符号的判断,极大值的定义,以及根据导数求极大值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数$\frac{2+3i}{i^3}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,以x轴正半轴为极轴,建立坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,设P为曲线C1上的动点,当点C1到曲线C2上点的距离最小时,点P的直角坐标为$(\frac{3}{2},\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求实数t的取值范围;
(Ⅱ)设g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函数|g(x)|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线$\left\{\begin{array}{l}x=3cosφ\\ y=2sinφ\end{array}\right.$(φ为参数)上的点到直线$\left\{\begin{array}{l}x=\frac{1}{2}+\frac{{2\sqrt{5}}}{5}t\\ y=1-\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数)的距离为$\frac{{\sqrt{5}}}{2}$的点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=PA=4,A点在PD上的射影为G点,E点在AB上,平面PCE⊥平面PCD.
(1)求证:AG⊥平面PCD;
(2)求直线PD与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.对于任意实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|(|x-1|+|x-2|)恒成立,
(Ⅰ)求满足条件的实数x的集合A;
(Ⅱ)是否存在x,y,z∈A,使得x+y+z=1,且$\sqrt{3x+1}$+$\sqrt{3y+1}$+$\sqrt{3z+1}$=5同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.把直角三角形ABC沿斜边上的高CD折成直二面角A-CD-B后,互相垂直的平面有3对.

查看答案和解析>>

同步练习册答案