分析 如图所示,把直角三角形ABC沿斜边上的高CD折成直二面角A-CD-B后,CD⊥AD,CD⊥DB,k可得∠ADB是二面角A-CD-B的平面角,因此∠ADB=90°,△ABC是锐角三角形,不是直角三角形,可以证明.
解答 解:如图所示,![]()
把直角三角形ABC沿斜边上的高CD折成直二面角A-CD-B后,
CD⊥AD,CD⊥DB,
∴∠ADB是二面角A-CD-B的平面角,因此∠ADB=90°,
△ABC是锐角三角形,不是直角三角形.
设CD=x,DB=y,AD=z,不妨设x≤y≤z,
则AC2=x2+z2,BC2=x2+y2,AB2=y2+z2,且∠ACB最大.
cos∠ACB=$\frac{{x}^{2}+{z}^{2}+{x}^{2}+{y}^{2}-({y}^{2}+{z}^{2})}{2\sqrt{({x}^{2}+{z}^{2})({x}^{2}+{y}^{2})}}$=$\frac{{x}^{2}}{\sqrt{({x}^{2}+{z}^{2})({x}^{2}+{y}^{2})}}$>0,
∴∠ACB为锐角,因此△ABC是锐角三角形,可得平面ABC与其它三个平面都不垂直.
综上可得:互相垂直的平面有3对:平面ACD⊥平面CDB,平面ACD⊥平面ADB,平面ABD⊥平面CDB.
故答案为:3.
点评 本题考查了空间位置关系及其空间角、线面面面垂直的判定与性质定理、直角三角形的边角关系、余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢读纸质书 | 不喜欢读纸质书 | 合计 | |
| 男 | 16 | 4 | 20 |
| 女 | 8 | 12 | 20 |
| 合计 | 24 | 16 | 40 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com