精英家教网 > 高中数学 > 题目详情
15.四棱锥P-ABCD中,底面ABCD为矩形,侧面PAB⊥底面ABCD.
(1)证明:平面PDA⊥平面PBA;
(2)若AB=2,BC=$\sqrt{2}$,PA=PB,四棱锥P-ABCD的体积为$\frac{{2\sqrt{6}}}{3}$,求BD与平面PAD所成的角.

分析 (1)证明:DA⊥侧面PAB,即可证明平面PDA⊥平面PBA;
(2)设AB的中点为O,连接PO,则PO⊥AB,若AB=2,BC=$\sqrt{2}$,PA=PB,四棱锥P-ABCD的体积为$\frac{{2\sqrt{6}}}{3}$,可得△PAB是等边三角形,设PA中点为H,连接BH,DH,则BH⊥AP,确定∠BDH为BD与平面PAD所成的角,即可求BD与平面PAD所成的角.

解答 (1)证明:由已知DA⊥AB,侧面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,
∴DA⊥侧面PAB,
∵DA?平面PDA,
∴平面PDA⊥平面PBA;
(2)解:设AB的中点为O,连接PO,则PO⊥AB,
∵侧面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,
∴PO⊥底面ABCD,
∴V=$\frac{2\sqrt{2}}{3}×PO$=$\frac{2\sqrt{6}}{3}$,
∴PO=$\sqrt{3}$,
∴△PAB是等边三角形,
设PA中点为H,连接BH,DH,则BH⊥AP 
由(1)平面PDA⊥平面PBA,∴BH⊥平面PDA,
∴∠BDH为BD与平面PAD所成的角.
在Rt△BHD中,BH=DH=$\sqrt{3}$,∴∠BDH=45°,
∴BD与平面PAD所成的角为45°

点评 本题考查线面垂直的判定与性质,考查线面角,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.把直角三角形ABC沿斜边上的高CD折成直二面角A-CD-B后,互相垂直的平面有3对.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设置AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,求A到平面PBD的距离.
(3)设二面角D-AE-C为60°,AP=1,AD=$\sqrt{3}$,求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.由一点S出发作三条射线,SA、SB、SC,若∠ASB=60°,∠ASC=45°,∠BSC=90°,求SA与平面SBC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy,椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,其中F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=$\frac{5}{3}$.
(1)求椭圆的方程;
(2)若过点D(4,0)的直线l与C1交于不同的两点A、B,且A在DB之间,试求△AOD与△BOD面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下表给出的是某港口在某季节每天几个时刻的水深关系
时刻0:003:006:009:0012:0015:0018:0021:0024:00
水深(m)5.07.05.03.05.07.05.03.05.0
若该港口的水深y(m)和时刻t(0≤t≤24)的关系可用函数y=Asin(ωt)+h(其中A>0,ω>0,h>0)来近似描述,则该港口在11:00的水深为4m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下,对它们抢到的红包个数进行统计,得到如表数据:
型号
手机品牌
甲品牌(个)438612
乙品牌(个)57943
(Ⅰ)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(Ⅱ)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.
①求在型号Ⅰ被选中的条件下,型号Ⅱ也被选中的概率;
②以X表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量X的分布列及数学期望E(X).
下面临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z=1-i的共轭复数为$\overline z$,则z•$\overline z$=(  )
A.0B.-1C.2D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案