4£®Î¢Ðźì°üÊÇÒ»¿î¿ÉÒÔʵÏÖÊÕ·¢ºì°ü¡¢²éÊռǼºÍÌáÏÖµÄÊÖ»úÓ¦Óã®Ä³ÍøÂçÔËÓªÉ̶Լס¢ÒÒÁ½¸öÆ·ÅÆ¸÷5ÖÖÐͺŵÄÊÖ»úÔÚÏàͬ»·¾³Ï£¬¶ÔËüÃÇÇÀµ½µÄºì°ü¸öÊý½øÐÐͳ¼Æ£¬µÃµ½Èç±íÊý¾Ý£º
ÐͺÅ
ÊÖ»úÆ·ÅÆ
¢ñ¢ò¢ó¢ô¢õ
¼×Æ·ÅÆ£¨¸ö£©438612
ÒÒÆ·ÅÆ£¨¸ö£©57943
£¨¢ñ£©Èç¹ûÇÀµ½ºì°ü¸öÊý³¬¹ý5¸öµÄÊÖ»úÐͺÅΪ¡°ÓÅ¡±£¬·ñÔò¡°·ÇÓÅ¡±£¬Çë¾Ý´ËÅжÏÊÇ·ñÓÐ85%µÄ°ÑÎÕÈÏΪÇÀµ½µÄºì°ü¸öÊýÓëÊÖ»úÆ·ÅÆÓйأ¿
£¨¢ò£©Èç¹û²»¿¼ÂÇÆäËüÒòËØ£¬Òª´Ó¼×Æ·ÅÆµÄ5ÖÖÐͺÅÖÐÑ¡³ö3ÖÖÐͺŵÄÊÖ»ú½øÐдó¹æÄ£Ðû´«ÏúÊÛ£®
¢ÙÇóÔÚÐͺŢñ±»Ñ¡ÖеÄÌõ¼þÏ£¬ÐͺŢòÒ²±»Ñ¡ÖеĸÅÂÊ£»
¢ÚÒÔX±íʾѡÖеÄÊÖ»úÐͺÅÖÐÇÀµ½µÄºì°ü³¬¹ý5¸öµÄÐͺÅÖÖÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©£®
ÏÂÃæÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒâÁгö2¡Á2ÁÐÁª±í£¬¸ù¾Ý2¡Á2ÁÐÁª±í£¬´úÈëÇóÁÙ½çÖµµÄ¹«Ê½£¬Çó³ö¹Û²âÖµ£¬ÀûÓù۲âֵͬÁÙ½çÖµ±í½øÐбȽϣ¬K2=0.4£¼2.706£¬¿ÉµÃµ½Ã»ÓÐ×ã¹»µÄÀíÓÉÈÏΪÊÖ»úϵͳÓëßݵúì°ü×ܽð¶îµÄ¶àÉÙÓйأ»
£¨¢ò£©ÓÉÌâÒâÇóµÃXµÄȡֵ1£¬2£¬3£¬ÔËÓÃÅÅÁÐ×éºÏµÄ֪ʶ£¬¿ÉµÃ¸÷×ԵĸÅÂÊ£¬ÇóµÃXµÄ·Ö²¼ÁУ¬ÓÉÆÚÍû¹«Ê½¼ÆËã¼´¿ÉµÃµ½£¨X£©£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒâÁгö2¡Á2ÁÐÁª±íÈçÏ£º

ºì°ü¸öÊý
ÊÖ»úÆ·ÅÆ
ÓÅ·ÇÓźϼÆ
¼×Æ·ÅÆ£¨¸ö£©325
ÒÒÆ·ÅÆ£¨¸ö£©235
ºÏ¼Æ5510
¡­£¨2·Ö£©
${K^2}=\frac{{10{{£¨{4-9}£©}^2}}}{5¡Á5¡Á5¡Á5}=\frac{10¡Á25}{25¡Á25}=0.4£¼2.072$£¬
ËùÒÔûÓÐ85%µÄÀíÓÉÈÏΪÇÀµ½ºì°ü¸öÊýÓëÊÖ»úÆ·ÅÆÓйأ®                ¡­£¨4·Ö£©
£¨¢ò£©¢ÙÁîʼþCΪ¡°ÐͺŠI±»Ñ¡ÖС±£»Ê¼þDΪ¡°ÐͺŠII±»Ñ¡ÖС±£¬
Ôò$P£¨C£©=\frac{C_4^2}{C_5^3}=\frac{3}{5}\;£¬\;P£¨CD£©=\frac{C_3^1}{C_5^3}=\frac{3}{10}$£¬
ËùÒÔ$P£¨\left.D\right|C£©=\frac{P£¨CD£©}{P£¨C£©}=\frac{1}{2}$£®                                        ¡­£¨6·Ö£©
¢ÚËæ»ú±äÁ¿XµÄËùÓпÉÄÜȡֵΪ1£¬2£¬3£¬¡­£¨7·Ö£©
$P£¨{X=1}£©=\frac{C_3^1•C_2^2}{C_5^3}=\frac{3}{10}$£»
$P£¨{X=2}£©=\frac{C_2^1C_3^2}{C_5^3}=\frac{3}{5}$£»
$P£¨{X=3}£©=\frac{C_3^3}{C_5^3}=\frac{1}{10}$£®   ¡­£¨10·Ö£©
¹ÊXµÄ·Ö²¼ÁÐΪ£º
X123
P$\frac{3}{10}$$\frac{3}{5}$$\frac{1}{10}$
¡àÊýѧÆÚÍûE£¨X£©£¬$E£¨X£©=1¡Á\frac{3}{10}+2¡Á\frac{3}{5}+3¡Á\frac{1}{10}=1.8$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓ㬿¼²é³¬¼¸ºÎ·Ö²¼µÄ¼ÆË㹫ʽ¡¢·Ö²¼ÁкÍÊýѧÆÚÍû¼°ÆäÅÅÁÐÓë×éºÏµÄ¼ÆË㹫ʽ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì3x2-2x+k=0£¬¸ù¾ÝÏÂÁÐÌõ¼þ£¬·Ö±ðÇó³ökµÄ·¶Î§£º
£¨1£©·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»
£¨2£©·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£»
£¨3£©·½³ÌÓÐʵÊý¸ù£»
£¨4£©·½³ÌÎÞʵÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪ¾ØÐΣ¬²àÃæPAB¡Íµ×ÃæABCD£®
£¨1£©Ö¤Ã÷£ºÆ½ÃæPDA¡ÍÆ½ÃæPBA£»
£¨2£©ÈôAB=2£¬BC=$\sqrt{2}$£¬PA=PB£¬ËÄÀâ×¶P-ABCDµÄÌå»ýΪ$\frac{{2\sqrt{6}}}{3}$£¬ÇóBDÓëÆ½ÃæPADËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÓÃa1a2¡­an±íʾһ¸önλÊý£¬ÆäÖÐa1£¬a2£¬¡­£¬an±íʾ¸÷¸öλÉϵÄÊý£¬Èô£¨$\overline{{a}_{1}{a}_{2}¡­{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}¡­{a}_{n}}$£©2=$\overline{{a}_{1}{a}_{2}¡­{a}_{k}{a}_{k+1}¡­{a}_{n}}$£¬Ôò³ÆÕýÕûÊý$\overline{{a}_{1}{a}_{2}¡­{a}_{k}}$+$\overline{{a}_{k+1}{a}_{k+2}¡­{a}_{n}}$ΪKÊý£¬È磨8+1£©2=81£¬£¨30+25£©2=3025£¬¼´9ºÍ55¶¼ÊÇKÊý£¬ÔòÏÂÃæËĸöÃüÌ⣺
¢Ù¸öλÊýµÄKÊýÖ»ÓÐ9£»¢Ú45²»ÊÇKÊý£»¢Û99ÊÇÒ»¸öKÊý£»¢Ü10n-1£¨n¡ÊN*£©ÊÇÒ»¸öKÊý£»
ÕýÈ·ÃüÌâµÄÐòºÅΪ¢Ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊʺϲ»µÈʽ|x2-4x+p|+|x-3|¡Ü5µÄxµÄ×î´óֵΪ3£®
£¨1£©ÇópµÄÖµ£»
£¨2£©ÇóxµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®·½³Ìlog3x+x-2=0µÄ½âµÄ¸öÊýÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®4ÔÂ23ÈÕÊÇÊÀ½ç¶ÁÊéÈÕ£¬ÎªÌá¸ßѧÉú¶Ô¶ÁÊéµÄÖØÊÓ£¬Èøü¶àµÄÈ˳©ÓÎÓÚÊ麣ÖУ¬´Ó¶øÊÕ»ñ¸ü¶àµÄ֪ʶ£¬Ä³¸ßÖеÄУѧÉú»á¿ªÕ¹ÁËÖ÷ÌâΪ¡°ÈÃÔĶÁ³ÉΪϰ¹ß£¬ÈÃ˼¿¼°éËæÈËÉú¡±µÄʵ¼ù»î¶¯£¬Ð£Ñ§Éú»áʵ¼ù²¿µÄÍ¬Ñ§Ëæ¼´³é²éÁËѧУµÄ40Ãû¸ßһѧÉú£¬Í¨¹ýµ÷²éËüÃÇÊÇϲ°®¶ÁÖ½ÖÊÊ黹ÊÇϲ°®¶Áµç×ÓÊ飬À´Á˽âÔÚУ¸ßһѧÉúµÄ¶ÁÊéϰ¹ß£¬µÃµ½Èç±íÁÐÁª±í£º
 Ï²»¶¶ÁÖ½ÖÊÊ鲻ϲ»¶¶ÁÖ½ÖÊÊéºÏ¼Æ
ÄÐ16420
Ů81220
ºÏ¼Æ241640
£¨¢ñ£©¸ù¾ÝÈç±í£¬ÄÜ·ñÓÐ99%µÄ°ÑÎÕÈÏΪÊÇ·ñϲ»¶¶ÁÖ½ÖÊÊé¼®ÓëÐÔ±ðÓйØÏµ£¿
£¨¢ò£©´Ó±»³é²éµÄ16Ãû²»Ï²»¶¶ÁÖ½ÖÊÊé¼®µÄѧÉúÖÐËæ»ú³éÈ¡2ÃûѧÉú£¬Çó³éµ½ÄÐÉúÈËÊý¦ÎµÄ·Ö²¼Áм°ÆäÊýѧÆÚÍûE£¨¦Î£©£®
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
ÏÂÁеÄÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªf£¨x£©=$\frac{3}{4}{e^{x+\frac{1}{2}}}$£¬g£¨x£©=ax3-x2-x+b£¨a£¬b¡ÊR£¬a¡Ù0£©£¬g£¨x£©µÄͼÏóCÔÚx=-$\frac{1}{2}$´¦µÄÇÐÏß·½³ÌÊÇy=$\frac{3}{4}x+\frac{9}{8}$£®
£¨1£©ÈôÇóa£¬bµÄÖµ£¬²¢Ö¤Ã÷£ºµ±x¡Ê£¨-¡Þ£¬2]ʱ£¬g£¨x£©µÄͼÏóCÉÏÈÎÒâÒ»µã¶¼ÔÚÇÐÏßy=$\frac{3}{4}x+\frac{9}{8}$ÉÏ»òÔÚÆäÏ·½£»
£¨2£©ÇóÖ¤£ºµ±x¡Ê£¨-¡Þ£¬2]ʱ£¬f£¨x£©¡Ýg£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÔÚ¡÷ABCÖУ¬ÒÑÖª2B=A+C£¬b2=ac£¬ÔòB-A=0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸