分析 (I)?m∈R,使得m2+2m+f(t)=0成立,f(t)≤1,再分类讨论,即可求实数t的取值范围;
(Ⅱ)设g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,|g(x)|=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}},0<x<\frac{1}{2}}\\{1,-1≤x≤0}\\{-2x-1,x<-1}\end{array}\right.$,作出|g(x)|的图象,即可求函数|g(x)|的值域.
解答 解:(I)由题意,f(t)=$\left\{\begin{array}{l}{-2t-1,t<-1}\\{1,-1≤t≤0}\\{2t+2,t>0}\end{array}\right.$,
?m∈R,使得m2+2m+f(t)=0成立,
∴△=4-4f(t)≥0,
∴f(t)≤1,
t<-1时,f(t)=-2t-1≤1,∴t≥-1,不合题意,舍去;
-1≤t≤0时,f(t)=1,此时f(t)≤1恒成立;
t>0时,f(t)=2t+1≤1,∴t≤0,不合题意,舍去;
综上所述,t的取值范围为[-1,0];
(Ⅱ)g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,∴|g(x)|=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}},0<x<\frac{1}{2}}\\{1,-1≤x≤0}\\{-2x-1,x<-1}\end{array}\right.$.
作出|g(x)|的图象,![]()
则函数|g(x||的值域为($\frac{\sqrt{2}}{2}$,+∞).
点评 本题考查绝对值不等式的解法,考查函数的值域,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 使用智能手机 | 不使用智能手机 | 合计 | |
| 学习成绩优秀 | 4 | 8 | 12 |
| 学习成绩不优秀 | 16 | 2 | 18 |
| 合计 | 20 | 10 | 30 |
| p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 有99.5%的把握认为使用智能手机对学习有影响 | |
| B. | 有99.5%的把握认为使用智能手机对学习无影响 | |
| C. | 有99.9%的把握认为使用智能手机对学习有影响 | |
| D. | 有99.9%的把握认为使用智能手机对学习无影响 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com