精英家教网 > 高中数学 > 题目详情
14.A,B二面角α-l-β的棱l上两点,P∈α,Q∈β,且∠PAB=∠ABQ=$\frac{π}{3}$,PA=QB=$\frac{1}{2}$AB=2,PQ=3,则二面角α-l-β的余弦值是$\frac{1}{6}$.

分析 在平面α内过P作PC⊥l,交AB于点C,在平面β内作QD⊥l,交AB于D,求出AC=BD=1,PC=QD=$\sqrt{3}$,CD=2,设二面角α-l-β的平面角为θ,由${\overrightarrow{PQ}}^{2}$=($\overrightarrow{PC}+\overrightarrow{CD}+\overrightarrow{DQ}$)2=${\overrightarrow{PC}}^{2}+{\overrightarrow{CD}}^{2}+{\overrightarrow{DQ}}^{2}$+2|$\overrightarrow{PC}$|•|$\overrightarrow{DQ}$|•cos(180°-θ),能求出二面角α-l-β的余弦值.

解答 解:如图,在平面α内过P作PC⊥l,交AB于点C,在平面β内作QD⊥l,交AB于D,
∵∠PAB=∠ABQ=$\frac{π}{3}$,PA=QB=$\frac{1}{2}$AB=2,
∴AC=BD=1,PC=QD=$\sqrt{3}$,CD=4-1-1=2,
设二面角α-l-β的平面角为θ,
∵PQ=3,${\overrightarrow{PQ}}^{2}$=($\overrightarrow{PC}+\overrightarrow{CD}+\overrightarrow{DQ}$)2=${\overrightarrow{PC}}^{2}+{\overrightarrow{CD}}^{2}+{\overrightarrow{DQ}}^{2}$+2|$\overrightarrow{PC}$|•|$\overrightarrow{DQ}$|•cos(180°-θ),
∴9=3+3+4-2×$\sqrt{3}×\sqrt{3}×cosθ$,
解得cosθ=$\frac{1}{6}$.
∴二面角α-l-β的余弦值是$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法、余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.复数z=$\frac{1}{1-i}$(其中i为虚数单位),$\overline z$为z的共轭复数,则下列结论正确的是(  )
A.$\overline z$=$\frac{1}{2}$-$\frac{1}{2}$iB.$\overline z$=-$\frac{1}{2}$-$\frac{1}{2}$iC.$\overline z$=-1-iD.$\overline z$=1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数$\frac{2+3i}{i^3}$对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图:在长方体ABCD-A1B1C1D1中,AB=AA1=a,BC=$\sqrt{2}$a,M分别是AD的中点.
(1)求证B1C1∥平面A1BC;
(2)求平面A1MC与底面ABCD所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知直平行六面体ABCD-A1B1C1D1的底面边长均为2a,侧棱长均为a,∠ABC=60°,E、F、G分别是A1B、A1C、B1C1的中点.
(1)求证:EF∥平面BB1C1C;
(2)求证:平面A1EG⊥平面BB1C1C;
(3)求二面角A1-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=lnx-\frac{1}{x},g(x)=x+\frac{1}{x}$.
( I)证明:函数f(x)在[1,e]上存在唯一的零点;
(Ⅱ)若g(x)≥af(x)在[1,e]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,以x轴正半轴为极轴,建立坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,设P为曲线C1上的动点,当点C1到曲线C2上点的距离最小时,点P的直角坐标为$(\frac{3}{2},\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求实数t的取值范围;
(Ⅱ)设g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函数|g(x)|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步练习册答案