分析 (Ⅰ)由PA⊥平面ABCD先证明DE⊥PA.连接AE,由勾股定理证明DE⊥AE,通过证明DE⊥平面PAE,即可得证PE⊥ED.
(Ⅱ)过点F作FH∥ED交AD于点H,再过点H作HG∥DP交PA于点G,通过证明平面GEH∥平面PFD,然后证明EG∥平面PFD.
解答
(本题满分为12分)
解:(Ⅰ)证明:由PA⊥平面ABCD,得DE⊥PA.连接AE,
因为AD=2AB,
所以由勾股定理可得DE⊥AE.
所以DE⊥平面PAE,
因此PE⊥ED. …(6分)
(Ⅱ)过点F作FH∥ED交AD于点H,则FH∥平面PED,且有AH=$\frac{1}{4}$AD.
再过点H作HG∥DP交PA于点G,则HG∥平面PED,且AG=$\frac{1}{4}$AP.
由面面平行的判定定理可得平面GEH∥平面PFD,
进而由面面平行的性质得到EG∥平面PFD,
从而确定G点位置. …(12分)
点评 本题主要考查了直线与平面平行的判定,直线与平面垂直的性质,考查了逻辑推理能力和空间想象能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -240 | C. | -480 | D. | 960 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\sqrt{3}$) | B. | (1,$\sqrt{5}$) | C. | ($\sqrt{3}$,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | DE∥PB | B. | 当AB=BC且PA=AC时DE∥PB | ||
| C. | 当且仅当AB=BC且PA=AC时,DE⊥AC | D. | DE⊥AC |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com