| A. | ①② | B. | ①②③ | C. | ②③④ | D. | ①②③④ |
分析 由S6=S9,得到a7+a8+a9=0,利用等差数列的性质化简,得到a8=0,进而得到选项①正确;再由数列{an}是递减的等差数列以及a8=0,可得出当n等于7或8时,sn取最大值,选项②正确;利用等差数列的前n项和公式表示出S15,利用等差数列的性质化简后,将a8的值代入可得出S15=0,故存在正整数k,使Sk=0,选项③正确;当m=5时,表示出S10-S5,利用等差数列的性质化简后,将a8=0代入可得出S10-S5=0,即S10=S5 ,故存在正整数m,使Sm=S2m,选项④正确.
解答 解:∵S6=S9,
∴a7+a8+a9=0,
由等差数列性质得:3a8=0,可得:a8=0,选项①正确;
∵数列{an}是递减的等差数列,由已知a1>a2>…a7>a8=0>a9…,
∴当n等于7或8时,sn取最大值,选项②正确;
∵a8=0,则S15=$\frac{1}{2}$(a1+a15)×15=15a8=0,
∴存在正整数k=15,使sk=0,选项③正确;
由等差数列性质,S10-S5=a6+a7+a8+a9+a10=5a8=0,即S10=S5 ,
∴存在正整数m=5,使sm=s2m,选项④正确,
则其中所有正确结论的序号是①②③④.
故选:D.
点评 本题考查了等差数列性质,以及等差数列的前n项和公式,利用了等量代换、以及整体代入的思想.利用a8=0这一特殊项盘活了整个等量代换过程,故根据题意得出a8=0是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{n}{2n+1}$ | B. | $\frac{n}{2n+1}$ | C. | -$\frac{2n}{2n+1}$ | D. | $\frac{2n}{2n+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -5i | C. | -2i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (7,8) | B. | [4$\sqrt{3}$,8) | C. | [4$\sqrt{3}$,+∞) | D. | (7,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 周期为π的奇函数 | B. | 周期为π的偶函数 | ||
| C. | 周期为$\frac{π}{2}$的奇函数 | D. | 周期为$\frac{π}{2}$的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2sin(2x-$\frac{5π}{6}$) | B. | f(x)=2sin(2x-$\frac{π}{6}$) | C. | f(x)=2sin(2x+$\frac{5π}{6}$) | D. | f(x)=2sin(2x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com