分析 根据正切函数的图象与性质,即可求出不等式$tanx-\sqrt{3}≤0$的解集.
解答 解:∵$tanx-\sqrt{3}≤0$,
∴tanx≤$\sqrt{3}$,
根据正切函数的图象与性质,
得-$\frac{π}{2}$+kπ<x≤$\frac{π}{3}$+kπ,k∈Z;
∴$tanx-\sqrt{3}≤0$成立的x的取值集合为
{x|-$\frac{π}{2}$+kπ<x≤$\frac{π}{3}$+kπ,k∈Z}.
故答案为:{x|-$\frac{π}{2}$+kπ<x≤$\frac{π}{3}$+kπ,k∈Z}.
点评 本题考查了正切函数的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | (ln2,+∞) | B. | (2ln2,+∞) | C. | (-∞,ln2) | D. | (-∞,2ln2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 36 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①②③ | C. | ②③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com