精英家教网 > 高中数学 > 题目详情
17.设f(x)=sin(2x-$\frac{π}{2}$),x∈R,则f(x)是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为$\frac{π}{2}$的奇函数D.周期为$\frac{π}{2}$的偶函数

分析 利用诱导公式化简函数的解析式,再利用余弦函数的周期性和奇偶性,得出结论.

解答 解:由于f(x)=sin(2x-$\frac{π}{2}$)=-cos2x,x∈R,
故f(x)是周期为π的偶函数,
故选:B.

点评 本题主要考查诱导公式,余弦函数的周期性和奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.求函数$y=x+\frac{4}{x}$的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直三棱柱ABC-A1B1C1(侧棱垂直于底面)的各顶点都在球O的球面上,且$AB=AC=BC=\sqrt{3}$若三棱柱ABC-A1B1C1的体积等于$\frac{9}{2}$,则球O的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}是递减的等差数列,{an}的前n项和是Sn,且S6=S9,有以下四个结论:
①a8=0; 
②若对任意n∈N+,都有Sn≤Sk成立,则k的值等于7或8时;
③存在正整数k,使Sk=0;
④存在正整数m,使Sm=S2m
其中所有正确结论的序号是(  )
A.①②B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a,b是直线,α、β、γ是不同的平面,有以下四个命题:
①a⊥α,b⊥β,a⊥b,则α⊥β;
②α⊥γ,β⊥γ,则α∥β;
③b⊥α,β⊥α,则b∥β;
④α∥β,α∩γ=a,β∩γ=b,则a∥b,
其中正确的命题序号是(  )
A.①④B.①③C.①②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x+a的最大值为1.
(1)求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,若方程g(x)=m在x∈[0,$\frac{π}{2}$]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=x(2013+lnx),f′(x0)=2 014,则x0等于(  )
A.e2B.1C.ln2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.向量$\overrightarrow{a}$=(cosθ,sinθ),向量$\overrightarrow{b}$=($\sqrt{3}$,-1),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围为[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(?x+φ)(A>0,0<?<4,|φ|<$\frac{π}{2}$)过点(0,$\frac{1}{2}$),且当x=$\frac{π}{6}$时,函数f(x)取得最大值1.
(1)将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x),求函数g(x)的表达式;
(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x-1,如果对于?x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1-x2|的最小值.

查看答案和解析>>

同步练习册答案