精英家教网 > 高中数学 > 题目详情
6.向量$\overrightarrow{a}$=(cosθ,sinθ),向量$\overrightarrow{b}$=($\sqrt{3}$,-1),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围为[0,4].

分析 根据向量模长的公式,转化为向量数量积的公式,结合三角函数的有界性进行求解即可.

解答 解:|2$\overrightarrow{a}$-$\overrightarrow{b}$|2=4|$\overrightarrow{a}$|2-4$\overrightarrow{a}$•$\overrightarrow{b}$+|$\overrightarrow{b}$|2=4+4-4($\sqrt{3}$cosθ-sinθ)=8-8cos($θ+\frac{π}{4}$)∈[0,16],
则|2$\overrightarrow{a}$-$\overrightarrow{b}$|∈[0,4],
故答案为:[0,4]

点评 本题主要考查向量数量积的应用,根据向量模长的公式转化为三角函数问题是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知“p∧q”是假命题,则下列选项中一定为真命题的是(  )
A.p∨qB.(¬p)∧(¬q)C.(¬p)∨qD.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=sin(2x-$\frac{π}{2}$),x∈R,则f(x)是(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为$\frac{π}{2}$的奇函数D.周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x),将f(x)图象沿x轴向右平移$\frac{π}{4}$个单位,然后把所得到图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,这样得到的曲线与y=2sin(x-$\frac{π}{3}$)的图象相同,那么y=f(x)的解析式为(  )
A.f(x)=2sin(2x-$\frac{5π}{6}$)B.f(x)=2sin(2x-$\frac{π}{6}$)C.f(x)=2sin(2x+$\frac{5π}{6}$)D.f(x)=2sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$\frac{tan105°-1}{tan105°+1}$的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(1+$\sqrt{3}$tanx)cos2x.
(Ⅰ)求函数f(x)的定义域和最小正周期;
(Ⅱ)当x∈(0,$\frac{π}{2}$)时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知M(3,-2),N(-5,-1),且P是MN的中点,则P点的坐标为$(-1,-\frac{3}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对边长分别是a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)若△ABC的面积等于$\sqrt{3}$,求a,b;
(2)求$\frac{b}{2}$+a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,a,b的夹角为$\frac{π}{3}$,则$\overrightarrow{b}$-$\overrightarrow{a}$与2$\overrightarrow{a}$+$\overrightarrow{b}$的夹角θ为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案