精英家教网 > 高中数学 > 题目详情
18.已知M(3,-2),N(-5,-1),且P是MN的中点,则P点的坐标为$(-1,-\frac{3}{2})$.

分析 利用中点坐标公式即可得出.

解答 解:由中档坐标公式可得:P$(\frac{3-5}{2},\frac{-2-1}{2})$,即P$(-1,-\frac{3}{2})$,
故答案为:$(-1,-\frac{3}{2})$.

点评 本题考查了中点坐标公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知直三棱柱ABC-A1B1C1(侧棱垂直于底面)的各顶点都在球O的球面上,且$AB=AC=BC=\sqrt{3}$若三棱柱ABC-A1B1C1的体积等于$\frac{9}{2}$,则球O的体积为$\frac{32π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=x(2013+lnx),f′(x0)=2 014,则x0等于(  )
A.e2B.1C.ln2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.向量$\overrightarrow{a}$=(cosθ,sinθ),向量$\overrightarrow{b}$=($\sqrt{3}$,-1),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|的取值范围为[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有如下命题:
①“a>b>0”是“$\frac{1}{a}$<$\frac{1}{b}$”成立的充分不必要条件;
②a>b>0,t>0,则$\frac{a}{b}$<$\frac{a+t}{b+t}$;
③a5+b5≥a2b3+a3b2对一切正实数a,b均成立;
④“$\frac{a}{b}$>1”是“a-b>0”成立的必要非充分条件.
其中正确的命题为①③(填写正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等边三角形ABC的边长为$4\sqrt{3}$,M,N分别为AB,AC的中点,沿MN将△ABC折成直二面角,则四棱锥A-MNCB的外接球的表面积为52π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(?x+φ)(A>0,0<?<4,|φ|<$\frac{π}{2}$)过点(0,$\frac{1}{2}$),且当x=$\frac{π}{6}$时,函数f(x)取得最大值1.
(1)将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x),求函数g(x)的表达式;
(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x-1,如果对于?x1,x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1-x2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列的通项公式为an=2n-1-1,则2047是这个数列的12项.

查看答案和解析>>

同步练习册答案