精英家教网 > 高中数学 > 题目详情
10.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据环保部门某日早6点至晚9点在惠农县、平罗县两个地区附近的PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,惠农县、平罗县两个地区浓度的方差较小的是(  )
A.惠农县B.平罗县
C.惠农县、平罗县两个地区相等D.无法确定

分析 由茎叶图得惠农县的数据相对集中,平罗县的数据相对分散,由此能求出结果.

解答 解:由茎叶图得惠农县的数据相对集中,
平罗县的数据相对分散,
∴惠农县、平罗县两个地区浓度的方差较小的是惠农县.
故选:A.

点评 本题考查两组数据的方差的大小的比较,是基础题,解题时要认真审题,注意茎叶图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且b2+ac=a2+c2,则∠B 的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为$\sqrt{2}ρsin({θ-\frac{π}{4}})=3$.
(1)求曲线C的普通方程及直线l的直角坐标方程;
(2)设P是曲线C上的任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x+3|+|2x-1|
(1)求不等式f(x)≤5的解集;
(2)若关于x的不等式f(x)<|m-2|的解集非空,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(Ⅰ)设a=2,$b=\frac{1}{2}$,求方程f(x)=2的根;
(Ⅱ)当a=$\frac{1}{2}$,b=2时,若对于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左右焦点分别为F1,F2,过右焦点F2的直线交双曲线右支于A、B两点,连结AF1、BF1,若|AB|=|BF1|且$∠AB{F_1}={90^o}$,则双曲线的离心率为(  )
A.$5-2\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.$6-3\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\vec a=({1,1})$,且$2\vec b-\vec a=({-5,1})$,则$\vec b$在$\vec a$上的投影为-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列判断正确的是④.(填写所有正确的序号)
①若sinx+siny=$\frac{1}{3}$,则siny-cos2x的最大值为$\frac{4}{3}$;
②函数y=sin(2x+$\frac{π}{4}$)的单调增区间是[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z;
③函数f(x)=$\frac{1+sinx-cosx}{1+sinx+cosx}$是奇函数;
④函数y=tan$\frac{x}{2}$-$\frac{1}{sinx}$的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知(1-2i)z=5(i为虚数单位),则复数z的共轭复数的模为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案