1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÆ½ÃæÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖá·Ç¸º°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ$\sqrt{2}¦Ñsin£¨{¦È-\frac{¦Ð}{4}}£©=3$£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³Ì¼°Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèPÊÇÇúÏßCÉϵÄÈÎÒâÒ»µã£¬ÇóµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£»Ö±ÏßlµÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñsin¦È-¦Ñcos¦È=3£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©Éè$P£¨{\sqrt{3}cos¦È£¬sin¦È}£©$£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÇó³öµãPµ½Ö±ÏßlµÄ¾àÀ룬ÓÉ´ËÄÜÇó³öµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÒòΪÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£®
ËùÒÔ${£¨{\frac{x}{{\sqrt{3}}}}£©^2}+{y^2}={cos^2}¦È+{sin^2}¦È=1$£¬
ËùÒÔÇúÏßCµÄÆÕͨ·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£¬
ÒòΪֱÏßlµÄ·½³ÌΪ$\sqrt{2}¦Ñsin£¨{¦È-\frac{¦Ð}{4}}£©=3$£®
Õ¹¿ªµÃ¦Ñsin¦È-¦Ñcos¦È=3£¬¼´y-x=3£¬
ËùÒÔÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx-y+3=0£»
£¨2£©Éè$P£¨{\sqrt{3}cos¦È£¬sin¦È}£©$£¬
ÔòµãPµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{|{\sqrt{3}cos¦È-sin¦È+3}|}}{{\sqrt{2}}}=\frac{{|{2sin£¨{¦È-\frac{¦Ð}{3}}£©-3}|}}{{\sqrt{2}}}¡Ü\frac{{5\sqrt{2}}}{2}$
µÈºÅ³ÉÁ¢µ±ÇÒ½öµ±$sin£¨{¦È-\frac{¦Ð}{3}}£©=-1$£¬
¼´$¦È=2k¦Ð+\frac{11¦Ð}{6}£¨{k¡ÊZ}£©$£¬¼´$P£¨{\frac{3}{2}£¬-\frac{1}{2}}£©$ʱ³ÉÁ¢£¬
Òò´ËµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óֵΪ$\frac{{5\sqrt{2}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÇúÏߵįÕÍ¨×ø±ê·½³Ì¡¢Ö±ÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éµãµ½Ö±ÏߵľàÀëµÄ×î´óÖµµÄÇ󷨣¬¿¼²éÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¡¢ÊýÐνáºÏ˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Õý·½ÌåABCD-A1B1C1D1£¬
£¨¢ñ£©ÇóÖ¤£ºB1D¡ÍÆ½ÃæA1B1C1
£¨¢ò£©ÇóÖ±ÏßBB1ÓëÆ½ÃæA1BC1Ëù³É½ÇÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èôº¯Êýf£¨x£©=$\frac{1}{3}{x^3}-£¨1+\frac{b}{2}£©{x^2}$+2bxÔÚ£¨-3£¬1£©Éϲ»Êǵ¥µ÷º¯Êý£¬Ôòf£¨x£©ÔÚRÉϵļ«Ð¡ÖµÎª£¨¡¡¡¡£©
A£®$2b-\frac{4}{3}$B£®$\frac{3}{2}b-\frac{2}{3}$C£®0D£®${b^2}-\frac{1}{6}{b^3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èç¹ûÖ±ÏߦÑ=$\frac{1}{cos¦È-2sin¦È}$ÓëÖ±Ïßl¹ØÓÚ¼«Öá¶Ô³Æ£¬ÔòÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊÇ£¨¡¡¡¡£©
A£®¦Ñ=$\frac{1}{cos¦È+2sin¦È}$B£®¦Ñ=$\frac{1}{2sin¦È-con¦È}$C£®¦Ñ=$\frac{1}{2cos¦È+sin¦È}$D£®¦Ñ=$\frac{1}{2cos¦È-sin¦È}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ ¦Ñ=2cos¦È£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ ¦Ñ sin£¨¦È+$\frac{¦Ð}{6}$£©=m£®
£¨I£©ÇóÇúÏßCÓëÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨II£©ÈôÖ±ÏßlÓëÇúÏßCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+t\\ y=t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬µãFµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬¦Ð£©£¬ÇÒFÔÚÖ±ÏßlÉÏ£®
£¨¢ñ£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬Çó|FA|•|FB|µÄÖµ£»
£¨¢ò£©ÇóÇúÏßCÄÚ½Ó¾ØÐÎÖܳ¤µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬AA1£¬BB1ΪԲÖùOO1µÄĸÏߣ¬BCÊǵ×ÃæÔ²OµÄÖ±¾¶£¬D£¬E·Ö±ðÊÇAA1£¬CB1µÄÖе㣬BA=$\sqrt{7}£¬AC=3£¬{B_1}C=4\sqrt{2}$
£¨1£©Ö¤Ã÷£ºDE¡ÎÆ½ÃæABC£»
£¨2£©ÇóÔ²ÖùOO1µÄÌå»ýºÍ±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®PM2.5ÊÇÖ¸´óÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚ2.5΢Ã׵ĿÅÁ£ÎҲ³ÆÎª¿ÉÈë·Î¿ÅÁ£ÎÈçͼÊǸù¾Ý»·±£²¿ÃÅijÈÕÔç6µãÖÁÍí9µãÔÚ»ÝÅ©ÏØ¡¢Æ½ÂÞÏØÁ½¸öµØÇø¸½½üµÄPM2.5¼à²âµãͳ¼ÆµÄÊý¾Ý£¨µ¥Î»£ººÁ¿Ë/Á¢·½Ã×£©ÁгöµÄ¾¥Ò¶Í¼£¬»ÝÅ©ÏØ¡¢Æ½ÂÞÏØÁ½¸öµØÇøÅ¨¶ÈµÄ·½²î½ÏСµÄÊÇ£¨¡¡¡¡£©
A£®»ÝÅ©ÏØB£®Æ½ÂÞÏØ
C£®»ÝÅ©ÏØ¡¢Æ½ÂÞÏØÁ½¸öµØÇøÏàµÈD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow a£¬\overrightarrow b$Âú×ã$|\overrightarrow a|=2£¬|\overrightarrow b|=1$£¬ÇÒ$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$£¬Ôò$|\overrightarrow a-\overrightarrow b|$=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸