分析 由${a_n}=\frac{{2n{a_{n-1}}}}{{{a_{n-1}}+n-1}}(n≥2,n∈{N^*})$,可得:$\frac{n}{{a}_{n}}$=$\frac{n-1}{2{a}_{n-1}}$+$\frac{1}{2}$,于是$\frac{n}{{a}_{n}}$-1=$\frac{1}{2}(\frac{n-1}{{a}_{n-1}}-1)$,利用等比数列的通项公式即可得出.
解答 解:由${a_n}=\frac{{2n{a_{n-1}}}}{{{a_{n-1}}+n-1}}(n≥2,n∈{N^*})$,可得:$\frac{n}{{a}_{n}}$=$\frac{n-1}{2{a}_{n-1}}$+$\frac{1}{2}$,
于是$\frac{n}{{a}_{n}}$-1=$\frac{1}{2}(\frac{n-1}{{a}_{n-1}}-1)$,
又$\frac{1}{{a}_{1}}$-1=-$\frac{1}{2}$,∴数列{$\frac{n}{{a}_{n}}$-1}是以-$\frac{1}{2}$为首项,$\frac{1}{2}$为公比的等比数列,
故$\frac{n}{{a}_{n}}$-1=-$\frac{1}{{2}^{n}}$,
∴an=$\frac{n•{2}^{n}}{{2}^{n}-1}$(n∈N*).
故答案为:$\frac{n•{2}^{n}}{{2}^{n}-1}$.
点评 本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{18}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1$+\sqrt{2}$ | B. | 2$+\sqrt{2}$ | C. | 3$+\sqrt{2}$ | D. | 4$+\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | tan(α+β)=3tan(α-β) | B. | tan(α+β)=2tan(α-β) | C. | 3tan(α+β)=tan(α-β) | D. | 3tan(α+β)=2tan(α-β) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com