精英家教网 > 高中数学 > 题目详情
11.数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1,a2,a5成等比数列,
(Ⅰ)证明S1,S3,S9成等比数列;
(Ⅱ)设a1=1,bn=a${\;}_{{2}^{n}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)运用等差数列的通项公式和等比数列中项的性质,解方程可得d=2a1,再由等差数列的求和公式,结合等比数列中项性质,即可得证;
(Ⅱ)求出bn=a${\;}_{{2}^{n}}$,=a1+(2n-1)d=1+2(2n-1)=2n+1-1,再由分组求和,结合等比数列的求和公式,计算即可得到所求和.

解答 (Ⅰ)证明:数列{an}是公差为d(d≠0)的等差数列,
Sn为其前n项和,a1,a2,a5成等比数列,
可得a22=a1a5
即为(a1+d)2=a1(a1+4d),
化简可得d=2a1
S1S9=a1(9a1+36d)=81a12,S3=3a1+3d=9a1
可得S1S9=S32
即为S1,S3,S9成等比数列;
(Ⅱ)解:设a1=1,bn=a${\;}_{{2}^{n}}$,=a1+(2n-1)d=1+2(2n-1)=2n+1-1,
数列{bn}的前n项和Tn=(4+8+…+2n+1)-n
=$\frac{4(1-{2}^{n})}{1-2}$-n=2n+2-4-n.

点评 本题考查等差数列的通项公式和求和公式的运用,等比数列中项的性质,考查数列的求和方法:分组求和,注意运用等比数列的求和公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若同时掷两枚骰子,则向上的点数和是6的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{5}{36}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足$2bcos({C-\frac{π}{3}})=a+c$.
(1)求角B的大小;
(2)若b=$\sqrt{3}$,求ac的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P为直线l:2x-3y+4=0上一点,设点P到定点F(0,1)距离为d1,点P到y=0的距离为d2,若d1-d2=1,这样的P点个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,点Q(c,$\frac{a}{2}$)在椭圆的内部,点P是椭圆C上的动点,且|PF1|+|PQ|<5|F1F2|恒成立,则椭圆离心率的取值范围是(  )
A.($\frac{1}{5}$,$\frac{\sqrt{2}}{2}$)B.($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$)C.($\frac{1}{3}$,$\frac{\sqrt{2}}{2}$)D.($\frac{2}{5}$,$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.过直线y=x+1上的点P作圆C:(x-1)2+(y-6)2=2的两条切线l1,l2,当直线l1,l2关于直线y=x+1对称时,|PC|=(  )
A.3B.2$\sqrt{2}$C.1+$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=2,且${a_n}=\frac{{2n{a_{n-1}}}}{{{a_{n-1}}+n-1}}(n≥2,n∈{N^*})$,则an=$\frac{n•{2}^{n}}{{2}^{n}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知底角为45°的等腰梯形ABCD,底边BC长为7cm,腰长为2$\sqrt{2}$cm,当一条垂直于底边BC(垂足为F)的直线l从B点开始由左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x(0≤x≤7),左边部分的面积为y,求y与x之间的函数关系式,画出程序框图,并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是由圆柱与两个半球组合而成的几何体的三视图,则该几何体的体积与表面积分别为(  )
A.$\frac{10}{3}π,8π$B.$\frac{16}{3}π,8π$C.$\frac{10}{3}π,10π$D.$\frac{16}{3}π,10π$

查看答案和解析>>

同步练习册答案