精英家教网 > 高中数学 > 题目详情
2.如图是由圆柱与两个半球组合而成的几何体的三视图,则该几何体的体积与表面积分别为(  )
A.$\frac{10}{3}π,8π$B.$\frac{16}{3}π,8π$C.$\frac{10}{3}π,10π$D.$\frac{16}{3}π,10π$

分析 利用圆柱与球的体积、表面积计算公式即可得出.

解答 解:该几何体的体积V=π×12×2+$\frac{4}{3}π×{1}^{3}$=$\frac{10π}{3}$.
表面积S=2π×1×2+4π×12=8π.
故选:A.

点评 本题考查了圆柱与球的三视图及其体积、表面积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1,a2,a5成等比数列,
(Ⅰ)证明S1,S3,S9成等比数列;
(Ⅱ)设a1=1,bn=a${\;}_{{2}^{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$\overrightarrow{a}$、$\overrightarrow{b}$分别是两条异面直线l1、l2的方向向量,向量$\overrightarrow{a}$、$\overrightarrow{b}$的夹角的取值范围为A.l1、l2所成的角的取值范围为B,则“a∈A”是“a∈B”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的函数f(x)=e-|x|,记a=f(log0.53),b=f(log25),c=f(0),则a,b,c的大小关系为(  )
A.b<a<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知Rt△ABC中,$∠A=\frac{π}{2}$,以B,C为焦点的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)经过点A,且与AB边交于点D,若|AD|=2|BD|,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{10}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a,b,c,三角形的面积S可由公式$S=\sqrt{p(p-a)(p-b)(p-c)}$求得,其中p为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a+b=12,c=8,则此三角形面积的最大值为(  )
A.$4\sqrt{5}$B.$8\sqrt{5}$C.$4\sqrt{15}$D.$8\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=x2e-x,g(x)=xlnx.
(1)若F(x)=f(x)-g(x),证明:F(x)在(0,+∞)上存在唯一零点;
(2)设函数h(x)=min{f(x),g(x)},(min{a,b}表示a,b中的较小值),若h(x)≤λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与C的交点为P,与y轴的交点为Q,且|PF|=$\frac{3}{2}$|PQ|,则抛物线C的方程为y2=4$\sqrt{2}$x,点P的坐标为(2$\sqrt{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a,b>0)的右顶点,过左焦点F与y轴平行的直线交双曲线于P,Q两点,若△APQ是锐角三角形,则双曲线C的离心率范围是(  )
A.$({1,\sqrt{2}})$B.$({1,\sqrt{3}})$C.(1,2)D.(2,+∞)

查看答案和解析>>

同步练习册答案