| A. | b<a<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
分析 根据题意,分析可得f(x)为偶函数且在(0,+∞)上为减函数,由对数函数的性质比较可得log25>|log0.53|>0,结合函数的单调性分析可得答案.
解答 解:根据题意,函数f(x)=e-|x|,其定义域为R,且f(-x)=e-|-x|=e-|x|=f(x),则f(x)为偶函数,
又由函数f(x)=e-|x|=$\left\{\begin{array}{l}{{(\frac{1}{e})}^{x},x≥0}\\{{e}^{x},x<0}\end{array}\right.$,则函数f(x)在(0,+∞)上为减函数,
而|log0.53|=log23,
又由log25>log23>0,即log25>|log0.53|>0,
又由函数f(x)在(0,+∞)上为减函数,
则有b<a<c;
故选:A.
点评 本题考查函数的奇偶性、单调性的综合应用,关键是分析函数的奇偶性与单调性.
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{3}π,8π$ | B. | $\frac{16}{3}π,8π$ | C. | $\frac{10}{3}π,10π$ | D. | $\frac{16}{3}π,10π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com