精英家教网 > 高中数学 > 题目详情
6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,其焦距为2c,点Q(c,$\frac{a}{2}$)在椭圆的内部,点P是椭圆C上的动点,且|PF1|+|PQ|<5|F1F2|恒成立,则椭圆离心率的取值范围是(  )
A.($\frac{1}{5}$,$\frac{\sqrt{2}}{2}$)B.($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$)C.($\frac{1}{3}$,$\frac{\sqrt{2}}{2}$)D.($\frac{2}{5}$,$\frac{\sqrt{2}}{2}$)

分析 点Q(c,$\frac{a}{2}$)在椭圆的内部,$\frac{{b}^{2}}{a}>\frac{a}{2}$,|PF1|+|PQ|=2a-|PF2|+|PQ|,由-|QF2|+|PQ|≤|PQ|-|PF2|≤|QF2|,且|QF2|=$\frac{a}{2}$,要|PF1|+|PQ|<5|F1F2|恒成立,即2a-|PF2|+|PQ|≤2a+$\frac{a}{2}$<5×2c.

解答 解:∵点Q(c,$\frac{a}{2}$)在椭圆的内部,∴$\frac{{b}^{2}}{a}>\frac{a}{2}$,⇒2b2>a2⇒a2>2c2
$\frac{c}{a}<\frac{\sqrt{2}}{2}$
|PF1|+|PQ|=2a-|PF2|+|PQ|
又因为-|QF2|+|PQ|≤|PQ|-|PF2|≤|QF2|,且|QF2|=$\frac{a}{2}$,
要|PF1|+|PQ|<5|F1F2|恒成立,即2a-|PF2|+|PQ|≤2a+$\frac{a}{2}$<5×2c
$\frac{5a}{2}<10c$,$\frac{c}{a}>\frac{1}{4}$,则椭圆离心率的取值范围是($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$).
故选:B

点评 本题考查了椭圆的方程、性质,椭圆的离心率,转化思想是解题关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,如果目标函数z=x+ay的最大值为$\frac{16}{3}$,则实数a的值为(  )
A.3B.$\frac{14}{3}$C.3或$\frac{14}{3}$D.3或$-\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若圆x2+y2-2x-4y+1=0关于直线ax-by=0(a>0,b>0)对称,则双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1的渐近线方程为(  )
A.y=2xB.$y=\frac{1}{2}x$C.y=±2xD.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在直角梯形ABCD中,AB∥CD,∠A=90°,∠C=45°,AB=AD=1,沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一球面上,则该球的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列a1,a2,a3,a4满足a1∈(0,1),a2∈(1,2),a3∈(2,4),则a4的取值范围是(  )
A.(3,8)B.(2,16)C.(4,8)D.$(2\sqrt{2},16)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}是公差为d(d≠0)的等差数列,Sn为其前n项和,a1,a2,a5成等比数列,
(Ⅰ)证明S1,S3,S9成等比数列;
(Ⅱ)设a1=1,bn=a${\;}_{{2}^{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,记bn=$\frac{{S}_{n+1}}{n}$.
(1)若{an}是首项为a、公差为d的等差数列,其中a,d均为正数.
①当3b1,2b2,b3成等差数列时,求$\frac{a}{d}$的值;
②求证:存在唯一的正整数n,使得an+1≤bn<an+2
(2)设数列{an}是公比为q(q>2)的等比数列,若存在r,t(r,t∈N*,r<t)使得$\frac{{b}_{t}}{{b}_{r}}$=$\frac{t+2}{r+2}$,求q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α,β均为锐角,且sin2α=2sin2β,则(  )
A.tan(α+β)=3tan(α-β)B.tan(α+β)=2tan(α-β)C.3tan(α+β)=tan(α-β)D.3tan(α+β)=2tan(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知Rt△ABC中,$∠A=\frac{π}{2}$,以B,C为焦点的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)经过点A,且与AB边交于点D,若|AD|=2|BD|,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{10}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案