精英家教网 > 高中数学 > 题目详情
5.设△ABC三个内角A,B,C所对的边分别为a,b,c,若a2sinC=4sinA,(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),则△ABC的面积为$\frac{3}{2}$.

分析 由正弦定理化简已知可得ac=4,a2+c2-b2=2$\sqrt{7}$,继而利用余弦定理可得cosB,利用同角三角函数基本关系式可求sinB,根据三角形面积公式即可计算得解.

解答 解:∵a2sinC=4sinA,
∴由正弦定理可得:a2c=4a,解得:ac=4,
∵(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),
∴c(a+b)(a-b)=c(2$\sqrt{7}$-c2),整理可得:a2+c2-b2=2$\sqrt{7}$,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{2\sqrt{7}}{2×4}$=$\frac{\sqrt{7}}{4}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×4×\frac{3}{4}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题主要考查了正弦定理,余弦定理可,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知P为椭圆$\frac{{x}^{2}}{4}$+y2=1上任意一点,F1,F2为其左、右焦点,则$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$的最小值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l经过点P(4,-3),且与圆C:(x+1)2+(y+2)2=25相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题中为真命题的是③④.
①若两个平面α∥β,a?α,b?β,则a∥b.
②若两个平面α∥β,a?α,b?β,则a与b一定异面;
③若两个平面α∥β,a?α,b?β,则a与b一定不相交;
④若两个平面α∥β,a?α,b?β,则a与b共面或异面;
⑤若两个平面α∥β,a?α,则a与β一定相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,若函数y=f(x)-k有且只有两个零点,则实数k的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:$\frac{{sin(\frac{π}{2}-α)sin(2π+α)cos(-π-α)}}{{sin(\frac{3π}{2}-α)cos(3π-α)cos(\frac{π}{2}+α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=f(x)的最小正周期是π,且图象关于点$({\frac{π}{3},0})$对称,则f(x)的解析式可以(  )
A.$y=sin({\frac{x}{2}+\frac{5π}{6}})$B.$y=sin({2x-\frac{π}{6}})$C.y=2sin2x-1D.$y=cos({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将边长为2的正方形ABCD沿对角线BD折成直二面角A-BD-C,则异面直线AB与CD所成的角60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于给定的样本点所建立的模型A和模型B,它们的残差平方和分别是${a_1},{a_2},{R^2}$的值分别为b1,b2,下列说法正确的是(  )
A.若a1<a2,则b1<b2,A的拟合效果更好
B.若a1<a2,则b1<b2,B的拟合效果更好
C.若a1<a2,则b1>b2,A的拟合效果更好
D.若a1<a2,则b1>b2,B的拟合效果更好

查看答案和解析>>

同步练习册答案